Skip to main content
Log in

Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of ‘binding sites’ by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2–4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edsall, J. and McKenzie, H.A., Adv. Biophys., 16 (1983) 53.

    Google Scholar 

  2. Blake, C.C.F., Pulford, W.C.A. and Artymiuk, P.J., J. Mol. Biol., 167 (1983) 693.

    Google Scholar 

  3. Sreenivasan, U. and Axelsen, P.H., Biochemistry, 31 (1992) 12785.

    Google Scholar 

  4. Rashin, A.A., Iofin, M. and Honig, B., Biochemistry, 25 (1986) 3619.

    Google Scholar 

  5. Loris, R., Stas, P.P.G. and Wyns, L., J. Biol. Chem., 269 (1994) 26722.

    Google Scholar 

  6. Thanki, N., Umrania, Y., Thornton, J.M. and Goodfellow, J.M., J. Mol. Biol., 224 (1991) 669.

    Google Scholar 

  7. Finney, J.L., Phil. Trans. R. Soc. London Ser. B, 278 (1977) 3.

    Google Scholar 

  8. Vyas, N.K., Vyas, M.N. and Quiocho, F.A., Science, 242 (1988) 1290.

    Google Scholar 

  9. Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 500.

    Google Scholar 

  10. Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 513.

    Google Scholar 

  11. Dean, P.M., Barakat, M.T. and Todorov, N.P., In Dean, P.M., Jolles, G. and Newton, C.G. (Eds.) New Perspectives in Drug Design, Academic Press, London, 1995, pp. 155–183.

    Google Scholar 

  12. LaLonde, J.M., Bernlohr, D.H. and Banaszak, L.J., Biochemistry, 33 (1994) 4885.

    Google Scholar 

  13. Zhang, X.-J. and Matthews, B.W., Protein Sci., 3 (1994) 1031.

    Google Scholar 

  14. Mittl, P.R.E. and Schulz, G.E., Protein Sci., 3 (1994) 799.

    Google Scholar 

  15. Karplus, P.A. and Schulz, G.E., J. Mol. Biol., 210 (1989) 163.

    Google Scholar 

  16. Zou, J.-Y., Flocco, M.M. and Mowbray, S.L., J. Mol. Biol., 233 (1993) 739.

    Google Scholar 

  17. Karpusas, M., Holland, D. and Remington, S.J., Biochemistry, 30 (1991) 6024.

    Google Scholar 

  18. Remington, S.J., Wiegand, G. and Huber, R., J. Mol. Biol., 158 (1982) 111.

    Google Scholar 

  19. Dunn, C.R. and Holbrook, J.J., Phil. Trans. R. Soc. London Ser. B, 332 (1991) 177.

    Google Scholar 

  20. Abad-Zapatero, C., Griffith, J.P., Sussman, J.L. and Rossmann, M.G., J. Mol. Biol., 198 (1987) 445.

    Google Scholar 

  21. Ji, X., Armstrong, R.N. and Gilliland, G.L., Biochemistry, 32 (1993) 12949.

    Google Scholar 

  22. Raghunathan, S., Chandross, R.J., Kretsinger, H.R., Allison, T.J., Penington, C.J. and Rule, G.S., J. Mol. Biol., 338 (1994) 815.

    Google Scholar 

  23. Connolly, M.L., Science, 221 (1983) 709.

    Google Scholar 

  24. Hubbard, S.J., Gross, K.-H. and Argos, P., Protein Eng., 7 (1994) 613.

    Google Scholar 

  25. Hubbard, S.J. and Argos, P., Protein Sci., 3 (1995) 2194.

    Google Scholar 

  26. Kuhn, L.A., Siani, M.A., Pique, M.E., Fisher, C.L., Getzoff, E.D. and Trainer, J.A., J. Mol. Biol., 228 (1992) 13.

    Google Scholar 

  27. Finer-Moore, J.S., Kossiakoff, A.A., Hurley, J.H., Earnest, T. and Stoud, R.M., Proteins, 12 (1992) 203.

    Google Scholar 

  28. Kossiakoff, A.A., Sintchak, M.D., Shpungin, J. and Presta, L.G., Proteins, 12 (1992) 223.

    Google Scholar 

  29. Williams, M.A., Goodfellow, J.M. and Thornton, J., Protein Sci., 3 (1994) 1224.

    Google Scholar 

  30. Meiering, E.M. and Wagner, G., J. Mol. Biol., 247 (1995) 294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poornima, C.S., Dean, P.M. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins. J Computer-Aided Mol Des 9, 521–531 (1995). https://doi.org/10.1007/BF00124323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124323

Keywords

Navigation