Skip to main content
Log in

A fast and efficient method to generate biologically relevant conformations

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Mutual binding between a ligand of low molecular weight and its macromolecular receptor demands structural complementarity of both species at the recognition site. To predict binding properties of new molecules before synthesis, information about possible conformations of drug molecules at the active site is required, especially if the 3D structure of the receptor is not known. The statistical analysis of small-molecule crystal data allows one to elucidate conformational preferences of molecular fragments and accordingly to compile libraries of putative ligand conformations. A comparison of geometries adopted by corresponding fragments in ligands bound to proteins shows similar distributions in conformation space. We have developed an automatic procedure that generates different conformers of a given ligand. The entire molecule is decomposed into its individual ring and open-chain torsional fragments, each used in a variety of favorable conformations. The latter ones are produced according to the library information about conformational preferences. During this building process, an extensive energy ranking is applied. Conformers ranked as energetically favorable are subjected to an optimization in torsion angle space. During minimization, unfavorable van der Waals interactions are removed while keeping the open-chain torsion angles as close as possible to the experimentally most frequently observed values. In order to assess how well the generated conformers map conformation space, a comparison with experimental data has been performed. This comparison gives some confidence in the efficiency and completeness of this approach. For some ligands that had been structurally characterized by protein crystallography, the program was used to generate sets of some 10 to 100 conformers. Among these, geometries are found that fall convincingly close to the conformations actually adopted by these ligands at the binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bürgi, H.B. and Dunitz, J.D., Structure Correlation, Vol. 1 and 2, VCH, Weinheim, 1994.

    Google Scholar 

  2. Klebe, G., In Bürgi, H.B. and Dunitz, J.D. (Eds.) Structure Correlation, Vol. 2, VCH, Weinheim, 1994, pp. 543–603.

    Google Scholar 

  3. Ricketts, E.M., Bradshaw, J., Hann, M., Hayes, F., Tanna, N. and Ricketts, D.M., J. Chem. Inf. Comput. Sci., 33 (1993) 905.

    Google Scholar 

  4. Pearlman, R.S., CDA News, 2 (1987) 1.

    Google Scholar 

  5. Gasteiger, J., Rudolph, C. and Sadowski, J., Tetrahedron Comput. Methodol., 3 (1990) 537.

    Google Scholar 

  6. DeClerq, P.J., Hoflack, J. and Cauwbergh, S., QCPE Program No. QCMP079, Bloomington, IN.

  7. Allen, F.H. and Kennard, O., Acc. Chem. Res., 16 (1983) 146.

    Google Scholar 

  8. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G. and Taylor, R., J. Chem. Soc., Perkin Trans. II, (1987) S1.

  9. Bürgi, H.B. and Dunitz, J.D., In Bürgi, H.B. and Dunitz, J.D. (Eds.) Structure Correlation, Vol. 1, VCH, Weinheim, 1994, pp. 23–70.

    Google Scholar 

  10. SYBYL Molecular Modeling System (Version 5.40), Tripos Associates, St. Louis, MO.

  11. On request, the supplementary material can be made available through electronic mail provided an appropriate e-mail address is delivered.

  12. Beck, H. and Egert, E., force-field program MOMO, University of GöttingenGöttingen, 1988.

    Google Scholar 

  13. Smith, A.E. and Lindner, H., J. Comput.-Aided Mol. Design, 5 (1991) 235.

    Google Scholar 

  14. Davidon, W.C., Math. Programming, 9 (1975) 1.

    Google Scholar 

  15. Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

    Google Scholar 

  16. Murray-Rust, P., In Griffin, J.F. and Duax, W.L. (Eds.) Molecular Structure and Biological Activity, Elsevier, New York, NY, 1982, pp. 117–133.

    Google Scholar 

  17. Dougherty, R.L., Edelman, A. and Hyman, J.M., Math. Comput., 52 (1989) 471.

    Google Scholar 

  18. Bürgi, H.B. and Dunitz, J.D., Acc. Chem. Res. 16 (1983) 153.

    Google Scholar 

  19. Bürgi, H.B. and Dunitz, J.D., Acta Crystallogr., B44 (1988) 445.

    Google Scholar 

  20. Maverick, E., Mirsky, K., Knobler, C.B. and Trueblood, K.N., Acta Crystallogr., B47 (1991) 272.

    Google Scholar 

  21. Klebe, G., In Jeffrey, G.A. and Piniella, J.F. (Eds.) The Application of Charge Density Research to Chemistry and Drug Design, Plenum, New York, NY, 1991, pp. 287–318.

    Google Scholar 

  22. Saenger, W., Angew. Chem., 85 (1973) 680; Angew. Chem., Int. Ed. Engl., 12 (1973) 591.

    Google Scholar 

  23. Schweizer, B., In Bürgi, H.B. and Dunitz, J.D. (Eds.) Structure Correlation, Vol. 1, VCH, Weinheim, 1994, pp. 369–404.

    Google Scholar 

  24. Klebe, G., J. Struct. Chem. (THEOCHEM), 308, (1994) 53.

    Google Scholar 

  25. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  26. Clark, M., CramerIII, R.D. and Van Opdenbosch, N., J. Comput. Chem., 10 (1989) 982.

    Google Scholar 

  27. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Proteins, 4 (1988) 31.

    Google Scholar 

  28. Remington, S., Wiegand, G. and Huber, R., J. Mol. Biol., 158 (1982) 111.

    Google Scholar 

  29. Sauter, N.K., Glick, G.D., Crowther, R.L., Park, S.J., Eisen, M.B., Skehel, J.J., Knowles, J.R. and Wiley, D.C., Proc. Natl. Acad. Sci. USA, 89 (1992) 324.

    Google Scholar 

  30. Christianson, D.W. and Lipscomb, W.N., Proc. Natl. Acad. Sci. USA, 83 (1986) 7568.

    Google Scholar 

  31. Brandstetter, H., Turk, D., Hoeffken, H.W., Grosse, D., Stürzebecher, J., Martin, P.D., Edwards, B.F.P. and Bode, W., J. Mol. Biol., 226 (1992) 1085.

    Google Scholar 

  32. Banner, D.W. and Hadvary, P., J. Biol. Chem., 266 (1991) 20085.

    Google Scholar 

  33. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    Google Scholar 

  34. Monzingo, A.F. and Matthews, B.W., Biochemistry, 23 (1984) 5724.

    Google Scholar 

  35. Kester, W.R. and Matthews, B.W., Biochemistry, 16 (1977) 2506.

    Google Scholar 

  36. Marshall, G.R., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 80–116.

    Google Scholar 

  37. Leach, A.R., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry II, VCH, New York, NY, 1991, pp. 1–55.

    Google Scholar 

  38. Hagler, A.T., Osguthorpe, D.J., Dauber-Osguthorpe, P. and Hemple, J.C., Science, 227 (1985) 1309.

    Google Scholar 

  39. Ferguson, D.M. and Raber, D.J., J. Am. Chem. Soc., 111 (1989) 4371.

    Google Scholar 

  40. Saunders, M., J. Am. Chem. Soc., 109 (1987) 3150.

    Google Scholar 

  41. Crippen, G.M. and Havel, T.F., Distance Geometry and Molecular Conformation, Research Studies Press, Wiley, New York, NY, 1988.

    Google Scholar 

  42. Saunders, M., Houk, K.N., Wu, Y.D., Still, W.C., Lipton, M., Chang, G. and Guida, W.C., J. Am. Chem. Soc., 112 (1990) 1419.

    Google Scholar 

  43. Böhm, H.J., Klebe, G., Lorenz, T., Mietzner, T. and Siggel, L., J. Comput. Chem., 11 (1990) 1021.

    Google Scholar 

  44. Marshall, G., Annu. Rev. Pharmacol. Toxicol., 27 (1987) 193.

    Google Scholar 

  45. Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.D. and Dunn, D.A., In Olson, E.C. and Christoffersen, R.E. (Eds.) Computer-Assisted Drug Design, Vol. 112, American Chemical Society, Washington, DC, 1979, pp. 205–226.

    Google Scholar 

  46. Mayer, D., Naylor, C.B., Motoc, I. and Marshall, G.R., J. Comput.-Aided Mol. Design, 1 (1987) 3.

    Google Scholar 

  47. Van Drie, J.H., Weininger, D. and Martin, Y.C., J. Comput.-Aided Mol. Design, 3 (1989) 225.

    Google Scholar 

  48. Davies, K. and Upton, R., Tetrahedron Comput. Methodol., 3 (1990) 665.

    Google Scholar 

  49. Dolata, D.P. and Carter, R.E., J. Chem. Inf. Comput. Sci., 27 (1987) 36.

    Google Scholar 

  50. Dolata, D.P., Leach, A.R. and Prout, K., J. Comput.-Aided Mol. Design, 1 (1987) 73.

    Google Scholar 

  51. Leach, A.R., Prout, K. and Dolata, D.P., J. Comput.-Aided Mol. Design, 2 (1988) 107.

    Google Scholar 

  52. Leach, A.R. and Prout, K., J. Comput. Chem., 11 (1990) 1193.

    Google Scholar 

  53. Wipke, W.T. and Hahn, M.A., Tetrahedron Comput. Methodol., 1 (1988) 141.

    Google Scholar 

  54. As an example: on a Silicon Graphics Indigo RS4000 the average time to generate a conformer of NAPAP (Fig. 14) was 3.2 s; for the smaller inhibitor 4-TAPAP (Fig. 15) 1.8 s per conformer were required.

  55. Hahn, M. and Wipke, W.T., Tetrahedron Comput. Methodol., 1 (1988) 81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klebe, G., Mietzner, T. A fast and efficient method to generate biologically relevant conformations. J Computer-Aided Mol Des 8, 583–606 (1994). https://doi.org/10.1007/BF00123667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123667

Key words

Navigation