Skip to main content
Log in

Drag coefficients and turbulence spectra within three boreal forest canopies

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Atmospheric turbulence was measured within a black spruce forest, a jack pine forest, and a trembling aspen forest, located in southeastern Manitoba, Canada. Drag coefficients (C d ) varied little with height within the pine and aspen canopies, but showed some height dependence within the dense spruce canopy. A constant C d of 0.15, with the measured momentum flux and velocity profiles, gave good estimates of leaf-area-index (LAI) profiles for the pine and aspen canopies, but underestimated LAI for the spruce canopy.

Velocity spectra were scaled using the Eulerian integral time scales and showed a substantial inertial subrange above the canopies. In the bottom part of the canopies, the streamwise and cross-stream spectra showed rapid energy loss whereas the vertical spectra showed an apparent energy gain, in the region where the inertial subrange is expected. The temperature spectra showed an inertial subrange with the expected -2/3 slope at all heights. Cospectra of momentum and heat flux had slopes of about -1 in much of the inertial subrange. Possible mechanisms to explain some of the spectral features are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, L. H. Jr.: 1968, ‘Turbulence and Wind Speed Spectra within a Japanese Larch Plantation’, J. App. Meteorol. 7, 73–78.

    Google Scholar 

  • Amiro, B. D.: 1990, ‘Comparison of Turbulence Statistics Within Three Boreal Forest Canopies’, Boundary-Layer Meteorol. (in press).

  • Amiro, B. D. and Davis, P. A.: 1988, ‘Statistics of Atmospheric Turbulence Within a Natural Black Spruce Forest Canopy’, Boundary-Layer Meteorol. 44, 267–283.

    Google Scholar 

  • Baldocchi, D. D. and Hutchison, B. A.: 1988, ‘Turbulence in an Almond Orchard: Spatial Variations in Spectra and Coherence’, Boundary-Layer Meteorol. 42, 293–311.

    Google Scholar 

  • Baldocchi, D. D. and Meyers, T. P.: 1988, ‘A Spectral and Lag-correlation Analysis of Turbulence in a Deciduous Forest Canopy’, Boundary-Layer Meteorol. 45, 31–58.

    Google Scholar 

  • Carter, G. C. and Ferrie, J. F.: 1979, ‘A Coherence and Cross Spectral Estimation Program’, in Programs for Digital Signal Processing, IEEE Press, New York, pp. 2.3–1 - 2.3–18.

    Google Scholar 

  • Gifford, F. Jr.: 1956, ‘The Relation Between Space and Time Correlations in the Atmosphere’, J. Meteorol. 13, 289–294.

    Google Scholar 

  • Grant, R. H.: 1983, ‘The Scaling of Flow in Vegetative Structures’, Boundary-Layer Meteorol. 27, 171–184.

    Google Scholar 

  • Jensen, N. O. and Busch, N. E.: 1982, ‘Atmospheric Turbulence’, in E. J. Plate (ed.), Engineering Meteorology, Elsevier Scientific Publ. Co., Amsterdam, pp. 179–231.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., and Haugen, D. A.: 1968, ‘Deriving Power Spectra from a Three-Component Sonic Anemometer’, J. Appl. Meteorol. 7, 827–837.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R.: 1972, ‘Spectral Characteristics of Surface-Layer Turbulence’, Quart. J. R. Meteorol. Soc. 98, 563–589.

    Google Scholar 

  • Kolmogoroff, A.: 1941, ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds' Numbers’, C.R. (Doklady) de l'Acad. des Sci. de l'URSS 30, 301–305.

    Google Scholar 

  • Landsberg, J. J. and Jarvis, P. G.: 1973, ‘A Numerical Investigation of the Momentum Balance of a Spruce Forest’, J. Appl. Ecol. 10, 645–655.

    Google Scholar 

  • Lumley, J. L. and Panofsky, H. A.: 1964, The Structure of Atmospheric Turbulence, John Wiley and Sons, New York, 239 pp.

    Google Scholar 

  • Maitani, T. and Shaw, R. H.: 1988, ‘Turbulent Transport Processes of Momentum and Scalars Within and Above a Deciduous Forest’, 8th Symposium on Turbulence and Diffusion, preprint volume, American Meteorological Society, Boston, Massachusetts.

    Google Scholar 

  • Rabiner, L. R., Schafer, R. W., and Dlugos, D.: 1979, ‘Periodogram Method for Power Spectrum Estimation’ Programs for Digital Signal Processing, IEEE Press, New York, pp. 2.1–1 - 2.1–10.

    Google Scholar 

  • Raupach, M. R. and Thom, A. S.: 1981, ‘Turbulence in and Above Plant Canopies’, Ann. Rev. Fluid Mech. 13, 97–129.

    Google Scholar 

  • Schlichting, H.: 1968, Boundary-Layer Theory, McGraw-Hill, New York, 747 pp

    Google Scholar 

  • Seginer, I., Mulhearn, P. J., Bradley, E. F., and Finnigan, J. J.: 1976, ‘Turbulent Flow in a Model Plant Canopy’, Boundary-Layer Meteorol. 10, 423–453.

    Google Scholar 

  • Shaw, R. H. and Seginer, I.: 1985, ‘The Dissipation of Turbulence in Plant Canopies’, 7th Symposium on Turbulence and Diffusion, preprint volume, American Meteorological Society, Boston, Massachusetts, pp. 200–203.

    Google Scholar 

  • Shaw, R. H., Silversides, R. H., and Thurtell, G. W.: 1974, ‘Some Observations of Turbulence and Turbulent Transport Within and Above Plant Canopies’, Boundary-Layer Meteorol. 5, 429–449.

    Google Scholar 

  • Shaw, R. H., den Hartog, G., and Neumann, H. H.: 1988, ‘Influence of Foliar Density and Thermal Stability on Profiles of Reynolds Stress and Turbulence Intensity in a Deciduous Forest’, Boundary-Layer Meteorol. 45, 391–409.

    Google Scholar 

  • Silversides, R. H.: 1974, ‘On Scaling Parameters for Turbulence Spectra within Plant Canopies’, Agric. Meteorol. 13, 203–211.

    Google Scholar 

  • Taylor, G. I.: 1938, ‘The Spectrum of Turbulence’. Proc. R. Soc. Lond., Ser. A 164, 476–490.

    Google Scholar 

  • Tennekes, H. and Lumley, J. L.: 1972. A First Course in Turbulence, MIT Press, Cambridge, MA, 300 pp.

    Google Scholar 

  • Welch, P. D.: 1967, ‘The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms’, IEEE Trans, on Audio and Elect. 15, 70–73.

    Google Scholar 

  • Wilson, J. D.: 1988, ‘A Second-order Closure Model for Flow Through Vegetation’, Boundary-Layer Meteorol. 42, 371–392.

    Google Scholar 

  • Wyngaard, J. C. and Zhang, S-F.: 1985, ‘Transducer-Shadow Effects on Turbulence Spectra Measured by Sonic Anemometers’, J. Atmos. and Ocean Tech. 2, 548–558.

    Google Scholar 

  • Zach, R., Amiro, B. D., Champ, D. R., Cornett, R. J., Davis, P. A., Killey, R. W. D., Lee, D. R., Moltyaner, G. L., Osborne, R. V., Sheppard, M. I., and Sheppard, S. C.: 1987, ‘Environmental Research for Canada's Nuclear Fuel Waste Management Program’, Radioactive Waste Management and the Nuclear Fuel Cycle 8, 197–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiro, B.D. Drag coefficients and turbulence spectra within three boreal forest canopies. Boundary-Layer Meteorol 52, 227–246 (1990). https://doi.org/10.1007/BF00122088

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122088

Keywords

Navigation