Skip to main content
Log in

The impact of the Wangara experiment

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Our understanding of the structure and dynamics of the atmospheric boundary layer (ABL) is often limited by a lack of experimental data. The voluminous amount of high quality data obtained from the Wangara Experiment (Clarke et al., 1971) has contributed greatly to meeting a long-standing need, particularly for data describing the ABL in middle latitudes over land.

In the surface layer the measurements provided the basis for determination of the stability dependence of the dimensionless gradients Φ M and Φ H arising out of Monin-Obukhov similarity theory (Hicks, 1976). In the outer layer where the choice of scaling parameters is not unique, the data have been used to determine the stability dependence of the similarity functions A, B, and C, and the most appropriate choices of scaling parameters (e.g., Yamada, 1976). In addition, the experimental data give determinations of some of the fundamental constants of turbulent flow in the ABL, such as the Von Kármán constant k = 0.41−0.41 (Hicks, 1969), and the neutral barotropic ABL similarity constants A 0=1.1 and B 0=4.3 (Clarke and Hess, 1974), where the subscript 0 indicates that the surface geostrophic wind was used as reference.

Perhaps the greatest impact of the Wangara Experiment has been to provide a data bank which could be used to test numerical simulations of the ABL. This has been useful not only for the newly developed higher-order closure models, but also for one-layer integral models predicting the height of the mixed layer and the height of the nocturnal surface inversion layer.

Lastly, the Wangara Experiment has pointed out some of the limitations and difficulties of obtaining accurate measurements of thermal winds, vertical velocity, acceleration terms, and representative spatially averaged fluxes. Microscale turbulence measurements outside the surface layer were not included in the Wangara Experiment and further experiments are needed to determine these statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C., De Moor, G., Lacarrere, P., Therry, G., and du Vachat, R.: 1978, ‘Modeling the 24-hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • Arya, S. P. S.: 1975a, ‘Comments on “Baroclinic Planetary Boundary-Layer Model and its Application to the Wangara Data”’, Boundary-Layer Meteorol. 9, 123–126.

    Google Scholar 

  • Arya, S. P. S.: 1975b, ‘Geostrophic Drag and Heat Transfer Relations for the Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 101, 147–161.

    Google Scholar 

  • Arya, S. P. S.: 1977, ‘Suggested Revisions to Certain Boundary-Layer Parameterization Schemes used in Atmospheric Circulation Models’, Monthly Wea. Rev. 105, 215–227.

    Google Scholar 

  • Arya, S. P. S. and Sundararajan, A.: 1976, ‘An Assessment of Proposed Similarity Theories for the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 10, 149–166.

    Google Scholar 

  • Arya, S. P. S. and Wyngaard, J. C.: 1975, ‘Effect of Baroclinicity on Wind Profiles and the Geostrophic Drag Law for the Convective Planetary Boundary Layer’, J. Atmos. Sci. 32, 767–778.

    Google Scholar 

  • Ball, F. K.: 1960, ‘Control of Inversion Height by Surface Heating’, Quart. J. Roy. Meteorol. Soc. 86, 483–494.

    Google Scholar 

  • Benkley, C. W. and Schulman, L. L.: 1979, ‘Estimating Hourly Mixing Depths from Historical Meteorological Data’, J. Appl. Meteorol. 18, 772–780.

    Google Scholar 

  • Bernstein, A. B.: 1973, ‘Some Observations of the Influence of the Geostrophic Shear on the Cross-Isobar Angle of the Surface Wind’, Boundary-Layer Meteorol. 3, 381–384.

    Google Scholar 

  • Betts, A. K.: 1973, ‘Non-Precipitating Cumulus Convection and its Parameterization’, Quart. J. Roy. Meteorol. Soc. 99, 178–196.

    Google Scholar 

  • Blackadar, A. K. and Tennekes, H.: 1968, ‘A Symptotic Similarity in Neutral, Barotropic Planetary Boundary Layers’, J. Atmos. Sci. 25, 1015–1020.

    Google Scholar 

  • Bodin, S.: 1979, ‘A Predictive Numerical Model of the Atmospheric Boundary Layer Based on the Turbulent Energy Equation’, Rept. RMK-13, Swedish Meteor. Hydr. Inst. Norkoping, Sweden, 138 pp.

    Google Scholar 

  • Brown, R. A.: 1974, ‘Matching Classical Boundary-Layer Solutions Toward a Geostrophic Drag Coefficient Relation’, Boundary-Layer Meteorol. 1, 489–500.

    Google Scholar 

  • Burk, S. D.: 1977, ‘The Moist Boundary Layer with a Higher-Order Turbulence Closure Model’, J. Atmos. Sci. 34, 629–638.

    Google Scholar 

  • Businger, J. A.: 1972, ‘The Atmospheric Boundary Layer’, in V. E. Derr (ed.), Remote Sensing of the Troposphere, U.S. Dept. of Commerce Washington, D.C., Chapt. 6.

    Google Scholar 

  • Businger, J. A. and Arya, S. P. S.: 1974, ‘Height of the Mixed Layer in the Stably Stratified Planetary Boundary Layer’, Adv. Geophys. 18A Academic Press, New York, pp. 73–92.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Carson, D. J.: 1972, ‘Discussion of “Observational Studies in the Atmospheric Boundary Layer”’, Quart. J. Roy. Meteorol. Soc. 98, 233–234.

    Google Scholar 

  • Carson, D. J.: 1973, ‘The Development of a Dry Inversion-Capped Convectively Unstable Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 99, 450–467.

    Google Scholar 

  • Charnock, H., Francis, J. D. R. and Sheppard, P. A.: 1956, ‘An Investigation of Wind Structures in the Trades, Anegada, 1953’, Phil. Trans. Roy. Soc. London A249, 179–234.

    Google Scholar 

  • Clarke, R. H.: 1970a, ‘Observational Studies in the Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 96, 91–114.

    Google Scholar 

  • Clarke, R. H.: 1970b, ‘Recommended Methods for the Treatment of Boundary Layer in Numerical Models’, Aust. Meteorol. Mag. 18, 51–73.

    Google Scholar 

  • Clarke, R. H.: 1972a, ‘Discussion of “Observational Studies in the Atmospheric Boundary Layer”’, Quart. J. Roy. Meteorol. Soc. 98, 234–235.

    Google Scholar 

  • Clarke, R. H.: 1972b, ‘The Vertical Propagation of Angular Momentum in the West Wind Belt’, Quart. J. Roy. Meteorol. Soc. 98, 617–626.

    Google Scholar 

  • Clarke, R. H.: 1973, ‘Note on the Variability of Empirical Determinations of the Functions A(Μ.) and B(Μ) of Rossby Number Similarity Theory’, Beitrage Phys. Atmos. 46, 64–65.

    Google Scholar 

  • Clarke, R. H.: 1974, ‘Attempts to Simulate the Diurnal Course of Meteorological Variables in the Boundary Layer’, Atmos. Ocean. Phys. 10, 361–374.

    Google Scholar 

  • Clarke, R. H.: 1975, ‘Note on Baroclinicity and Inverse Behavior of Surface Stress and Wind Turning in the Boundary Layer’, Beitrage Phys. Atmos. 48, 46–50.

    Google Scholar 

  • Clarke, R. H. and Brook, R. R.: 1979, ‘The Koorin Experiment: Atmospheric Boundary-Layer Data over Tropical Savannah Land’, Dept. of Science, Canberra, Australia.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data’, Tech. Paper No. 19, CSIRO, Div. Meteor. Phys. Aspendale, Australia, 362 pp.

    Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1973, ‘On the Appropriate Scaling for Velocity and Temperature in the Planetary Boundary Layer’, J. Atmos. Sci. 30, 1346–1353.

    Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1974, ‘Geostrophic Departure and the Functions A and B of Rossby-Number Similarity Theory’, Boundary-Layer Meteorol. 7, 267–287.

    Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1975, ‘On the Relation Between Surface Wind and Pressure Gradient Especially in Lower Latitudes’, Boundary-Layer Meteorol. 9, 325–339.

    Google Scholar 

  • Csanady, G. T.: 1967, ‘On the Resistance Law of a Turbulent Ekman Layer’, J. Atmos. Sci. 24, 467–471.

    Google Scholar 

  • Csanady, G. T.: 1974, ‘Equilibrium Theory of the Planetary Boundary Layer with an Inversion Lid’, Boundary-Layer Meteorol. 6, 63–79.

    Google Scholar 

  • Deacon, E. L.: 1973, ‘Geostrophic Drag Coefficients’, Boundary-Layer Meteorol. 5, 321–340.

    Google Scholar 

  • Deardorff, J. W.: 1972, ‘Parameterization of the Planetary Boundary Layer for use in General Circulation Models’, Monthly Wea. Rev. 100, 93–106.

    Google Scholar 

  • Deardorff, J. W.: 1973, ‘Three-Dimensional Numerical Modeling of the Planetary Boundary Layer’, in D. A. Haugen, (ed.), Workshop in Micrometeorology, American Meteorol. Soc. Boston, pp. 271–311.

    Google Scholar 

  • Deardorff, J. W.: 1974a, ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Deardorff, J. W.: 1974b, ‘Three-Dimensional Numerical Study of Turbulence in an Entraining Mixed Layer’, Boundary-Layer Meteor. 7, 199–226.

    Google Scholar 

  • Deardorff, J. W.: 1979, ‘Prediction on Convective Mixed-Layer Entrainment for Realistic Capping Inversion Structure’, J. Atmos. Sci. 36, 424–436.

    Google Scholar 

  • Delage, Y.: 1974, ‘A Numerical Study of the Nocturnal Atmospheric Boundary Layer’, Quart. J. Roy. Meteor. Soc. 100, 351–364.

    Google Scholar 

  • Dobson, G. M. B.: 1914, ‘Pilot Balloon Ascent at the Central Flying School, Upavon, During the Year, 1913’, Quart. J. Roy. Meteorol. Soc. 40, 123–135.

    Google Scholar 

  • Donaldson, C. du P.: 1973, ‘Construction of a Dynamic Model of the Production of Atmospheric Turbulence and the Dispersal of Atmospheric Pollutants’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorol. Soc. Boston, pp. 313–392.

    Google Scholar 

  • Dyer, A. J.: 1967, ‘The Turbulent Transport of Heat and Water Vapour in an Unstable Atmosphere’, Quart. J. Roy. Meteorol. Soc. 93, 501–508.

    Google Scholar 

  • Dyer, A. J. and Hicks, B. B.: 1970, ‘Flux-Gradient Relations in the Constant Flux Layer’, Quart. J. Roy. Meteorol. Soc. 96, 715–721.

    Google Scholar 

  • Dyer, A. J., Hicks, B. B. and King, K. M.: 1967, ‘The Fluxatron—A Revised approach to the Measurement of Eddy Fluxes in the Lower Atmosphere’, J. Appl. Meteorol. 6, 408–413.

    Google Scholar 

  • Ekman, V. W.: 1905, ‘On the Influence of the Earth's Rotation on Ocean Currents’, Arkiv Matematik Astron. Fysik 2, 1–53.

    Google Scholar 

  • Fiedler, F. and Panofsky, H. A.: 1972, ‘The Geostrophic Drag Coefficient and the ‘effective’ Roughness Length’, Quart. J. Roy. Meteorol. Soc. 98, 213–220.

    Google Scholar 

  • Francey, R. J. and Garratt, J. R.: 1978, ‘Eddy Flux Measurement Over the Ocean and Related Transfer Coefficients’, Boundary-Layer Meteorol. 14, 153–166.

    Google Scholar 

  • Gambo, K.: 1978, ‘Notes on the “Turbulence Closure Model For Atmospheric Boundary Layer”’, J. Meteorol. Soc. Japan 56, 466–480.

    Google Scholar 

  • Garratt, J. R. and Francey, R. J.: 1978, ‘Bulk Characteristics of Heat Transfer in the Unstable, Baroclinic Atmospheric Layer’, Boundary-Layer Meteorol. 15, 399–421.

    Google Scholar 

  • Garratt, J. R. and Hicks, B. B.: 1973, ‘Momentum, Heat and Water Vapour Transfer to and from Natural and Artificial Surfaces’, Quart. J. Roy. Meteorol. Soc. 99, 680–687.

    Google Scholar 

  • Gill, A. E.: 1968, ‘Similarity Theory and Geostrophic Adjustment’, Quart. J. Roy. Meteorol. Soc. 94, 586–589.

    Google Scholar 

  • Hess, G. D.: 1973, ‘On Rossby-Number Similarity Theory for a Baroclinic Planetary Boundary Layer’, J. Atmos. Sci. 30, 1722–1723.

    Google Scholar 

  • Hess, G. D. and Clarke, R. H.: 1973, ‘Time Spectra and Cross-Spectra of Kinetic Energy in the Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 99, 130–153.

    Google Scholar 

  • Hicks, B. B.: 1969, ‘A Simple Instrument for the Measurement of Reynolds Stress by Eddy Correlation’, J. Appl. Meteorol. 8, 825–827.

    Google Scholar 

  • Hicks, B. B.: 1976, ‘Wind Profile Relationships from the “Wangara” Experiment’, Quart. J. Roy. Meteorol. Soc. 102, 535–551.

    Google Scholar 

  • Hicks, B. B.: 1980, ‘An Analysis of Wangara Micrometeorology: Surface, Stress, Sensible Heat, Evaporation and Dewfall’, (in preparation).

  • Hoxit, L. R.: 1974, ‘Planetary Boundary-Layer Winds in Baroclinic Conditions’, J. Atmos. Sci. 31, 1003–1020.

    Google Scholar 

  • Lettau, H. H. and Davidson, B.: 1957, Exploring the Atmosphere's First Mile, 2 vols, Pergamon Press, New York.

    Google Scholar 

  • Lewellen, W. S. and Teske, M. E.: 1976, ‘Second-Order Closure Modeling of Diffusion in the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 10, 69–90.

    Google Scholar 

  • Lilly, D. K.: 1968, ‘Models of Cloud-Topped Mixed Layers under a Strong Inversion’, Quart. J. Roy. Meteorol. Soc. 94, 292–309.

    Google Scholar 

  • Long, R. R. and Guffey, L. J.: 1977, ‘Drag and Heat Transfer Relations for the Planetary Boundary Layer’, Boundary-Layer Meteorol. 11, 363–373.

    Google Scholar 

  • Lumley, J. L. and Khajeh-Nouri, B.: 1974, ‘Computational Modeling of Turbulent Transport’, Adv. Geophys. 18A, Academic Press, New York, pp. 169–192.

    Google Scholar 

  • Kazanski, A. B. and Monin, A. S.: 1960, ‘A Turbulent Regime Above the Ground Atmospheric Layer’, Izv. Acad. Sci. USSR. Geophys. Ser. No. 1, 110–112.

    Google Scholar 

  • Mahrt, L. and Heald, R. C.: 1979, ‘Comments on “Determining Height of the Nocturnal Boundary Layer”’, J. Appl. Meteorol. 18, 383.

    Google Scholar 

  • Mahrt, L. and Lenschow, D. H.: 1976, ‘Growth Dynamics of the Convectively Mixed Layer’, J. Atmos. Sci. 33, 41–51.

    Google Scholar 

  • Manton, M. J.: 1978, ‘On Dry Penetrative Convection’, Boundary-Layer Meteorol. 14, 301–322.

    Google Scholar 

  • Melgarejo, J. W. and Deardorff, J. W.: 1974, ‘Stability Functions for the Boundary-Layer Resistance Laws Based upon Observed Boundary-Layer Heights’, J. Atmos. Sci. 31, 1324–1333.

    Google Scholar 

  • Melgarejo, J. W. and Deardorff, J. W.: 1975, ‘Revision to “Stability Functions for the Boundary-Layer Resistance Laws Based upon Observed Boundary-Layer Heights”’, J. Atmos. Sci. 32, 837–839.

    Google Scholar 

  • Mellor, G. L.: 1973, ‘Analytic Prediction of the Properties of Stratified Planetery Surface Layers’, J. Atmos. Sci. 30, 1061–1069.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Mildner, P.: 1932, ‘Uber Reibung in einer spezielien Luftmasse’, Beitr. Phys. Frei. Atmos. 19, 151–158.

    Google Scholar 

  • Misra, P. K.: 1977, ‘A Variable K Planetary Boundary-Layer Model’, Boundary-Layer Meteorol. 11, 117–120.

    Google Scholar 

  • Monin, A. S.: 1965, ‘On the Symmetry Properties of Turbulence in the Surface Layer of Air’, Atmos. Ocean. Phys. 1, 45–54.

    Google Scholar 

  • Orlanksi, I., Ross, B. B. and Polinsky, L. J.: 1974, ‘Diurnal Variation of the Planetary Boundary Layer in a Mesoscale Model’, J. Atmos. Sci. 31, 965–989.

    Google Scholar 

  • Panofsky, H. A., Blackadar, A. K. and McVehil, G. E.: 1960, ‘The Diabatic Wind Profile’, Quart. J. Roy. Meteorol. Soc. 86, 390–398.

    Google Scholar 

  • Pielke, R. A. and Mahrer, Y.: Representation of the Heated Planetary Boundary Layer in Mesoscale Models with Coarse Vertical Resolution, J. Atmos. Sci. 32, 2288–2308.

  • Prandtl, L.: 1932, ‘Meteorolische Anwendungen der Stromungslehre’, Beitr. Phys. Atmos. 19, 188–202.

    Google Scholar 

  • Schemm, C. E. and Lipps, F. B.: 1976, ‘Some Results from a Simplified Three-Dimensional Numerical Model of Atmospheric Turbulence’, J. Atmos. Sci. 33, 1021–1041.

    Google Scholar 

  • Sheppard, P. A. and Omar, M. H.: 1952, ‘The Wind Stress over the Ocean from Observations in the Trades’, Quart. J. Roy. Meteorol. Soc. 78, 563–582.

    Google Scholar 

  • Sheppard, P. A., Charnock, H., and Francis, J. R. D.: 1952, ‘Observation of the Westerlies over the Sea’, Quart. J. Roy. Meteorol. Soc. 78, 563–582.

    Google Scholar 

  • Stull, R. B.: 1976, ‘Mixed-Layer Depth Model Based on Turbulent Energetics’, J. Atmos. Sci. 33, 1268–1278.

    Google Scholar 

  • Sundararajan, A.: 1975, ‘Significance of the Neutral Height Scale for the Convective, Barotropic Planentary Boundary Layer’, J. Atmos. Sci. 32, 2285–2287.

    Google Scholar 

  • Swinbank, W. C.: 1964, ‘The Exponential Wind Profile’, Quart. J. Roy. Meteorol. Soc. 90, 119–135.

    Google Scholar 

  • Swinbank, W. C. and Dyer, A. J.: 1967, ‘An Experimental Study in Micrometeorology’, Quart. J. Roy. Meteorol. Soc. 93, 494–500.

    Google Scholar 

  • Swinbank, W. C. and Dyer, A. J.: 1968, ‘Micrometeorological Experiments 1962–1964’, Tech. Paper No. 17, CSIRO, Div, Meteor, Phys. Aspendale, Australia, 48 pp.

    Google Scholar 

  • Tennekes, H.: 1970, ‘Free Convection in the Turbulent Ekman Layer of the Atmosphere’, J. Atmos. Sci. 27, 1027–1034.

    Google Scholar 

  • Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above a Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.

    Google Scholar 

  • Venkatesh, S. and Csanady, G. T.: 1974, ‘A Baroclinic Planetary Boundary-Layer Model and its Application to the Wangara Data’, Boundary-Layer Meteorol. 5, 459–473.

    Google Scholar 

  • Webb, E. K.: 1970, ‘Profile Relationships: The Log-Linear Range and Extension to Strong Stability’, Quart. J. Roy. Meteorol. Soc. 96, 67–90.

    Google Scholar 

  • Wieringa, J.: 1980, ‘A Revaluation of the Kansas Mast Influence on Measurements of Stress and Cup Anemometer Overspeeding’, Boundary-Layer Meteorol. 18, 411–430.

    Google Scholar 

  • Wippermann, F.: 1975, ‘Properties of the Thermal Boundary Layer Atmosphere Obtained with a PBL-model’, Beitr. Phys. Atmos. 48, 30–45.

    Google Scholar 

  • Wyngaard, J. C.: 1975, ‘Modeling the Planetary Boundary Layer Extension to the Stable Case’, Boundary-Layer Meteorol. 9, 441–460.

    Google Scholar 

  • Wyngaard, J. C., Arya, S. P. S. and Coté, O. R.: 1974, ‘Some Aspects of the Structure of Convective Planetary Boundary Layer’, J. Atmos. Sci. 31, 747–754.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1974, ‘The Evolution of a Convective Planetary Boundary Layer-a Higher-Order Closure Model Study’, Boundary-Layer Meteorol. 7, 289–308.

    Google Scholar 

  • Yamada, T.: 1975, ‘The Critical Richardson Number and the Ratio of the Eddy Transport Coefficient Obtained from a Turbulence Closure Model’, J. Atmos. Sci. 32, 926–933.

    Google Scholar 

  • Yamada, T.: 1976, ‘On the Similarity Functions A, B and C of the Planentary Boundary Layer’, J. Atmos. Sci. 33, 781–793.

    Google Scholar 

  • Yamada, T.: 1979a, ‘PBL Similarity Profiles Determined from a Level 2 Turbulence-Closure Model’, Boundary-Layer Meteorol. 17, 333–351.

    Google Scholar 

  • Yamada, T.: 1979b, ‘Prediction of the Nocturnal Surface Inversion Height’, J. Appl. Meteorol. 18, 526–531.

    Google Scholar 

  • Yamada, T. and Berman, S.: 1979, ‘A Critical Evaluation of a Simple Mixed-Layer Model with Penetrative Convection’, J. Appl. Meteorol. 18, 781–786.

    Google Scholar 

  • Yamada, T. and Mellor, G.: 1975, ‘A Simulation of the Wangara Atmospheric Boundary-Layer Data’, J. Atmos. Sci. 32, 2309–2329.

    Google Scholar 

  • Yordanov, D.: 1975, ‘A Simple Baroclinic Model of the Planetary Boundary Layer’, Atmos. Ocean. Phys, 11, 387–389.

    Google Scholar 

  • Yordanov, D.: 1976, ‘Universal Functions in the Resistance Zone of the Baroclinic Planetary Boundary Layer’, Atmos. Ocean. Phys. 12, 769–772.

    Google Scholar 

  • Yordanov, D. L. and Wippermann, F.: 1972, ‘The Parameterization of the Turbulent Fluxes of Momentum, Heat and Moisture at the Ground in a Baroclinic Planetary Boundary Layer’, Beitr. Phys. Atmos. 45, 58–65.

    Google Scholar 

  • Yordanov, D. L., Penenko, V. V. and Aloyan, A. Y.: 1978, ‘Parameterization of a Stratified Baroclinic Planetary Boundary Layer for Numerical Modeling of Atmospheric Processes’, Atmos. Ocean. Phys. 14, 577–582.

    Google Scholar 

  • Yu, T. W.: 1977, ‘Notes on “Turbulence Parameterization of the Atmospheric Boundary Layer”’, J. Meteorol. Soc. Japan 55, 617–622.

    Google Scholar 

  • Yu, T. W.: 1978, ‘Determining Height of the Nocturnal Boundary Layer’, J. Appl. Meteorol. 17, 28–33.

    Google Scholar 

  • Zeman, O. and Tennekes, H.: 1977, ‘Parameterization of the Turbulent Energy Budget at the Top of the Daytime Atmospheric Boundary Layer’, J. Atmos. Sci. 34, 111–123.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer’, Boundary-Layer Meteorol. 3, 141–145.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Resistance Laws and Prediction Equations for the Depth of the Planetary Boundary Layer’, J. Atmos. Sci. 32, 741–752.

    Google Scholar 

  • Zilitinkevich, S. S. and Chalikov, D. V.: 1968, ‘The Laws of Resistance and of Heat and Moisture Exchange in the Interaction between the Atmosphere and the Underlying Surface’, Izv. Akad. Nauk U.S.S.R., 1, 438–441.

    Google Scholar 

  • Zilitinkevich, S. S. and Monin, A. S.: 1974, ‘Similarity Theory for the Planetary Boundary Layer’, Atmos. Ocean Phys. 10, 353–359.

    Google Scholar 

  • Zilitinkevich, S. S., Leichtmann, D. L., and Monin, A. S.: 1967, ‘Dynamics of the Atmospheric Boundary Layer’, Atmos. Ocean Phys. 3, 297–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review is one of a series of reviews on the ABL, written at the invitation of Working Group A of the International Commission on Dynamic Meteorology/IAMAP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, G.D., Hicks, B.B. & Yamada, T. The impact of the Wangara experiment. Boundary-Layer Meteorol 20, 135–174 (1981). https://doi.org/10.1007/BF00119899

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119899

Keywords

Navigation