Skip to main content
Log in

Enzymology of cellulose degradation

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In the last few years there has been a considerable improvement in the understanding of the mechanisms involved in the microbial degradation of cellulose, but there are still many uncertainties. As presently understood, it would appear that different mechanisms may operate in the various types of microorganism. Thus degradation of crystalline cellulose is effected by anaerobic bacteria by large Ca-dependent and thiol-dependent multicomponent endoglucanase-containing complexes (cellulosomes) located on concerted action of endo- and exo-glucanases which act some distance from the cell which renders cellulose soluble. All of the endo- and exo-glucanases possess a bifunctional domain structure: one contains the catalytic site, the other is involved in binding the enzyme to crystalline cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuja, PM, Pilz, I, Claeyssens, M & Tomme, P (1988a) Domain structure of cellobiohydrolase II as studied by small X-ray scattering: Close resemblance to cellobiohydrolase. I. Biochem. Biophys. Res. Commun. 156: 180–185

    Google Scholar 

  • Abuja, PM, Schmuck, M, Pilz, I, Tomme, P & Claeyssens, M et al. (1988b) Structural and functional domains of cellobiohydrolase I from Trichoderma reesei. A small angle X-ray scattering study of the intact enzyme and its core. Eur. Biophys. J. 15: 339–342

    Google Scholar 

  • Bayer, EA & Lamed, R (1986) Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J. Bacteriol. 167: 828–836

    Google Scholar 

  • Bayer, EA, Setter, E & Lamed, R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J. Bacteriol. 163: 552–559

    Google Scholar 

  • Béguin, P (1990) Molecular biology of cellulose degradation. Ann. Rev. Microbiol. 44: 219–248

    Google Scholar 

  • Beldman, G, Searle-Van Leewen, MF, Rombouts, FR & Voragen, FGJ (1985) The cellulase of Trichoderma viride. Purification, characterization and comparison of all detectable endoglucanases, exoglucanases and β-glucosidases. Eur. J. Biochem. 146: 301–308

    Google Scholar 

  • Bergfors, T, Rouvinen, J, Lethovaara, P, Caldentey, X, Tomme, P, Claeyssens, M, Pettersson, G, Teeri, T, Knowles, J & Jones, TA (1989) Crystallization of the core protein of cellobiohydrolase II from Trichoderma reesei. J. Molec. Biol. 209: 167–169

    Google Scholar 

  • Bhat, KM, McCrae, SI & Wood, TM (1989) The endo-1,4-β-D-glucanase system of Penicillium pinophilum cellulase: isolation, purification, and characterization of five major endoglucanase components. Carbohyd. Res. 190: 279–297

    Google Scholar 

  • Bhikhabhai, R & Pettersson, G (1984) The disulphide bridges in a cellobiohydrolase and an endoglucanase from Trichoderma reesei. Biochem J. 222: 729–736

    Google Scholar 

  • Changas, GS & Wilson, DB (1988) Cloning of the Thermomonospora fusca endoglucanase E2 gene in Streptomyces lividans: Affinity purification and functional domains of the cloned gene product. Appl. Environ. Microbiol. 54: 2521–2526

    Google Scholar 

  • Chanzy, H, Henrissat, B & Vuong, R (1984) Colloidal gold labelling of 1,4-β-D-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett. 172: 193–197

    Google Scholar 

  • Chanzy, H & Henrissat, B (1985) Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett. 184: 285–288

    Google Scholar 

  • Chanzy, H, Henrissat, B, Vuong, R & Schülein, M (1983) The action of 1,4-β-D-glucan cellobiohydrolase on Valonia cellulose microcrystals. An electron microscope study. FEBS Lett. 153: 113–118

    Google Scholar 

  • Chen, CM, Gritzali, M & Stafford, DW (1987) Nucleotide sequence and deduced primary structure of cellobiohydrolase II from Trichoderma reesei. Bio/Technol. 5: 274–278

    Google Scholar 

  • Chippaux, M (1988) Genetics of cellulase in Erwinia chrysanthemi. In: Aubert, JP, Béguin, P & Millet, J (Eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 219–234). Academic Press, London

    Google Scholar 

  • Claeyssens, M, Van Tilbeurgh, H, Tomme, P, Wood, TM & McCrae, SI (1989) Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 261: 819–825

    Google Scholar 

  • Claeyssens, M & Tomme, P (1989) Structure-activity relationships in cellulolytic enzymes. In: Coughlan, MP (Ed) Enzyme Systems for Lignocellulose Degradation (pp 37–49), Elsevier Applied Science, London

    Google Scholar 

  • Claeyssens, M, Tomme, P, Boewer, CF & Hehre, EJ (1990) Stereochemical course of hydrolysis and hydration reactions catalysed by cellobiohydrolases I and II from Trichoderma reesei. FEBS Lett. 263: 89–92

    Google Scholar 

  • Coughlan, MP (1985) The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Revs. 3: 39–109

    Google Scholar 

  • (1990) Mechanisms of cellulose degradation by fungi and bacteria. In: Delort-Laval J (Eds) Cell Walls: Structure, Function and Degradation (in press)

  • Coughlan, MP & Ljungdahl, LG (1988) Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems. In: Aubert, JP, Béguin, P & Millet, J (Eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 11–30). Academic Press, London

    Google Scholar 

  • Creuzet, N, Berenger, JF & Frixon, C (1983) Characterization of exoglucanase and synergistic hydrolysis of cellulose in Clostridium stercorarium. FEMS Microbiol. Lett. 20: 347–350

    Google Scholar 

  • Enari, TM & Niku-Paavola, ML (1987) Enzymatic hydrolysis of cellulose: Is the current theory of the mechanisms of hydrolysis valid? CRC Crit. Revs. Biotechnol. 5: 67–87

    Google Scholar 

  • Eriksson, KE & Pettersson, B (1982) Purification and partial characterization of two acidic proteases from the white rot fungus Sporotrichum pulverulentum. Eur. J. Biochem. 124: 635–642

    Google Scholar 

  • Eriksson KE & Wood TM (1985) Biodegradation of cellulose. In: Higuchi T (Ed) Biosynthesis and Biodegradation of Wood Components (pp 469–504). Academic Press

  • Fägerstam, LG & Pettersson, LG (1980) The 1,4-β-glucan cellobiohydrolases of Trichoderma reesei QM9414. FEBS Lett. 119: 97–101

    Google Scholar 

  • Fägerstam, LG, Pettersson, LG & Engström, JA (1984) The primary structure of a 1,4-β-glucan cellobiohydrolase from the fungus Trichoderma reesei QM9414. FEBS Lett. 167: 309–315

    Google Scholar 

  • Faure, E, Belaich, A, Bagnara, C, Gaudin, C & Belaich, JP (1989) Sequence analysis of the Clostridium cellulolyticum celCCA endoglucanase gene. Gene 65: 51–58

    Google Scholar 

  • Gardner, RM, Doewer, KC & White, BA (1987) Purification and characterization of an exo-β-1,4-glucanase from Ruminococcus flavefaciens FD-1. J. Bacteriol. 169: 4581–4588

    Google Scholar 

  • Gilkes, NR, Warren, RAJ, Miller, RC Jr & Kilburn, DG (1988) Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263: 10401–10407

    Google Scholar 

  • Gräbnitz, F & Staudenbauer, WL (1988) Characterization of two β-glucosidase genes from Clostridium thermocellum. Biotechnol. Lett. 10: 73–78

    Google Scholar 

  • Gum, EK & Brown, RD (1977) Comparison of four purified extracellular 1,4-β-D-glucan cellobiohydrolase enzymes from Trichoderma viride. Biochim. Biophys. Acta 492: 225–231

    Google Scholar 

  • Hall, J, Hazlewood, GP, Barker, PJ & Gilbert, HJ (1988) Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for activity. Gene 69: 29–38

    Google Scholar 

  • Hazlewood, GP, Romaniec, MP, Davidson, K, Grépinet, O & Béguin, P (1988) A catalogue of Clostridium thermocellum endoglucanase, β-glucosidase and xylanase genes cloned in Escherichia coli. FEMS Microbiol. Lett. 51: 231–236

    Google Scholar 

  • Henrissat, B, Claeyssens, M, Tomme, P, Lemesle, L & Mornon, JP (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83–95

    Google Scholar 

  • Henrissat, B, Driguez, H, Viet, C & Schülein, M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technol. 3: 722–726

    Google Scholar 

  • Henrissat B & Mornon JP (1990) Comparison of Trichoderma cellulases with other β-glucanases. In: Kubicek CP, Eveleigh DE, Eisterbauer H, Steiner W & Kubicek-Pranz EM (Eds) Trichoderma reesei Cellulases: Biochemistry, Genetics, Physiology, and Applications. Proc. TRICEL 89 Meet. held in Vienna, Sept. 1989. Royal Society of Chemistry

  • Howard, GT & White, B (1988) Molecular cloning and expression of cellulase genes from Ruminococcus albus 8 in Escherichia coli bacteriophage. Appl. Environ. Microbiol. 54: 1752–1755

    Google Scholar 

  • Johansson, G, Ståhlberg, J, Lindeberg, G, Engström, Å & Pettersson, G (1989) Isolated fungal cellulase terminal domains and a synthetic minimum analogue bind to cellulose. FEBS Lett. 243: 389–393

    Google Scholar 

  • Johnson, EA, Sakajah, M, Halliwell, G, Madia, A & Demain, AL (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 43: 1125–1132

    Google Scholar 

  • Joliff, G, Béguin, P, Juy, M, Millet, J & Ryter, A (1986) Isolation, crystallization and properties of a new cellulase of Clostridium thermocellum overproduced in Escherichia coli. Bio/Technol. 4: 896–900

    Google Scholar 

  • Klyosov, AA (1988) Cellulases of the third generation. In: Aubert, JP, Béguin, P & Millet, J (Eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 87–99). Academic Press, London

    Google Scholar 

  • Knowles, JKC, Lehtovaara, P & Teeri, TT (1987) Cellulase families and their genes. Trends Biotechnol. 5: 255–261

    Google Scholar 

  • Knowles JKC, Lehtovaara P, Murray M & Sinnott M (1988a) Stereochemical course of action of the cellobioside hydrolases I and II of Trichoderma reesei. J. Chem. Soc., Chem. Commun. 1401–1402

  • Knowles, JKC, Teeri, TT, Lehtovaara, P, Penttilä, M & Saloheimo, M (1988b) The use of gene technology to investigate fungal cellulolytic enzymes. In: Aubert, JP, Béguin, P & Millet, J (Eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 153–169). Academic Press, London

    Google Scholar 

  • Koenigs, JW (1975) Hydrogen peroxide and iron: A microbial cellulolytic system. Biotechnol. Bioeng. Symp. 5: 151–159

    Google Scholar 

  • Kraulis, PJ, Clore, GM, Nilges, M, Jones, TA, Pettersson, G, Knowles, JKC & Gronenborn, AM (1989) Determination of the three dimensional structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28: 7241–7257

    Google Scholar 

  • Kyriacou, AK, MacKenzie, CR & Neufield, RJ (1987) Detection and characterization of specific and non-specific endoglucanases of Trichoderma reesei. Evidence demonstrating endoglucanase activity by cellobiohydrolase II. Enzyme Microb. Technol. 9: 25–32

    Google Scholar 

  • Lamed, R & Bayer, EA (1988) The cellulosome concept: Exocellular/extracellular enzyme reactor centers for efficient binding and cellulolysis. In: Aubert, JP, Béguin, P & Millet, J (Eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 101–116). Academic Press, London

    Google Scholar 

  • Lamed, R, Setter, E & Bayer, EA (1983a) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol. 156: 828–836

    Google Scholar 

  • Lamed, R, Setter, E, Kenig, R & Bayer, EA (1983b) The cellulosome: A discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol. Bioeng. Symp. 13: 163–181

    Google Scholar 

  • Lamed, R, Kenig, R & Setter, E (1985) Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb. Technol. 7: 32–41

    Google Scholar 

  • Ljungdahl, LG (1989) Mechanisms of cellulose hydrolysis by enzymes from anaerobic and aerobic bacteria: In: Coughlan, MP (Ed) Enzyme Systems for Lignocellulose Degradation (pp 5–16). Elsevier Applied Science, London

    Google Scholar 

  • Ljungdahl, LG, Coughlan, MP, Mayer, F, Mori, Y & Hon-nami, K (1988) Macrocellulase complexes and yellow affinity substance from Clostridium thermocellum. In: Wood, WA & Kellog, ST (Eds) Methods in Enzymology, Vol 160 (pp 483–500). Academic Press, New York

    Google Scholar 

  • Ljungdahl, LG, Petterson, B, Eriksson, KE & Wiegel, J (1983) A yellow affinity substance involved in the cellulolytic system of Clostridium thermocellum. Curr. Microbiol. 9: 195–200

    Google Scholar 

  • McGavin, M & Forsberg, CW (1989) Catalytic and substrate-binding domains of endoglucanase 2 from Bacteroides succinogenes. J. Bacteriol. 121: 3310–3315

    Google Scholar 

  • MacKenzie, CR, Bilous, D & Johnson, KG (1984) Purification and characterization of an exoglucanase from Streptomyces flavogriseus. Can. J. Microbiol. 30: 1171–1178

    Google Scholar 

  • MacKenzie, CR, Bilous, D & Patel, GB (1985) Studies on cellulose hydrolysis by Acetivibrio cellulolyticus. Appl. Environ. Microbiol. 50: 243–248

    Google Scholar 

  • MacKenzie, CR, Patel, GB & Bilous, D (1987) Factors involved in hydrolysis of microcrystalline cellulose by Acetivibrio cellulolyticus. Appl. Environ. Microbiol. 53: 304–308

    Google Scholar 

  • Mayer, F (1988) Cellulolysis: Ultrastructural aspects of bacterial systems. Electron Microsc. Rev. 1: 69–85

    Google Scholar 

  • Mayer, F, Coughlan, MP, Mori, Y & Ljungdahl, LG (1987) Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Appl. Environ. Microbiol. 53: 2785–2792

    Google Scholar 

  • Miller, RC Jr, Gilkes, NR, Greenberg, NM, Kilburn, DG, Langsford, ML & Warren, RAJ (1988) Cellulomonas fimi cellulases and their genes. In: Aubert, JP, Béguin, P & Millet, J (Eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 235–248). Academic Press, London

    Google Scholar 

  • Mischak, K, Hofer, F, Messner, R, Weissinger, E & Hayn, M (1989) Monoclonal antibodies against different domains of cellobiohydrolase I and II from Trichoderma reesei. Biochim. Biophys. Acta 990: 1–7

    Google Scholar 

  • Niku-Paavola, ML, Lappalainen, A, Enari, TM & Nummi, M (1985) A new appraisal of the endoglucanases of the fungus Trichoderma reesei. Biochem. J. 231: 75–81

    Google Scholar 

  • Penttilä, M, Lehtovaara, P, Nevalainen, H, Bhikhabhai, R & Knowles, JKC (1986) Homology between cellulase genes of Trichoderma reesei: Complete nucleotide sequence of the endoglucanase I gene. Gene 45: 253–263

    Google Scholar 

  • Pilz I, Schwarz E, Kilburn DG, Miller RC Jr, Warren RAJ & Gilkes NR (1990) The tertiary structure of a bacterial cellulase determined by small-angle X-ray-scattering analysis. Biochem. J. 271: (in press)

  • Reese, ET, McGuire, AH & Parrish, FW (1967) Glucosidase and exo-glucanases. Can. J. Biochem. 46: 25–34

    Google Scholar 

  • Reese, ET, Siu, RGH & Levinson, HS (1950) Biological degradation of soluble cellulose derivatives. J. Bacteriol. 9: 485–497

    Google Scholar 

  • Rouvinen J, Bergfors T, Pettersson G, Knowles JKC & Jones TA (1989) Crystallographic studies on the core protein of cellobiohydrolase II from Trichoderma reesei. First European Workshop on Crystallography of Biological Macromolecules. Como, Italy, May 15–19, 1989

  • Ryu, DDY, Kim, C & Mandels, M (1984) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol. Bioeng. 26: 488–496

    Google Scholar 

  • Saloheimo, M, Lehtovaara, P, Penttilä, M, Teeri, TT & Stahlberg, J (1988) EGIII, a new endoglucanase from Trichoderma reesei: and the characterization of both gene and enzyme. Gene 63: 11–21

    Google Scholar 

  • Schmuck, M, Pilz, I, Hayn, M & Esterbauer, H (1986) Investigation of cellobiohydrolase from Trichoderma reesei by small angle X-ray scattering. Biotechnol. Lett. 8: 397–402

    Google Scholar 

  • Shoemaker, S, Schweickaert, V, Ladner, M, Gelfand, D, Kwok, S, Myambo, K & Innis, M (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/Technol. 1: 691–696

    Google Scholar 

  • Sprey, B & Lambert, C (1983) Titration curves of cellulases from Trichoderma reesei: Demonstration of a cellulase-xylanase-β-glucosidase-containing complex. FEMS Microbiol. Lett. 18: 217–222

    Google Scholar 

  • Streamer, M, Eriksson, KE & Pettersson, B (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. Functional characterization of five endo-1,4-β-glucanase and one exo-β-1,4-glucanase. Eur. J. Biochem. 59: 607–613

    Google Scholar 

  • Teeri TT, Jones A, Kraulis P, Rouvinen J, Penttilä M, Harkki A, Nevelainen H, Vanhanen S, Saloheimo M & Knowles JKC (1990) Engineering Trichoderma and its cellulases. In: Kubicek CP, Eveleigh DE, Esterbauer H, Steiner W & Kubicek-Pranz EM (Eds) Trichoderma reesei Cellulases: Biochemistry, Genetics, Physiology, and Applications. Proc. TRICEL 89 Meet. held in Vienna, Sept. 1989. Royal Society of Chemistry

  • Teeri, TT, Kumar, V, Lehtovaara, P & Knowles, JKC (1987a) Construction of cDNA libraries by blunt end ligation: high-frequency cloning of long cDNAs from filamentous fungi. Anal. Biochem. 164: 60–67

    Google Scholar 

  • Teeri, TT, Lehtovaara, S, Kauppinen, S, Salovuori, I & Knowles, JKC (1987b) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene, sequence and expression of cellobiohydrolase II. Gene 51: 43–52

    Google Scholar 

  • Teeri, TT, Salovouri, I & Knowles, JKC (1983) The molecular cloning of the major cellulase gene from Trichoderma reesei. Bio/Technol. 1: 696–699

    Google Scholar 

  • Tomme, P & Claeyssens, M (1989) Identification of a functionally important carboxyl group in cellobiohydrolase I from Trichoderma reesei: A chemical modification study. FEBS Lett. 243: 239–243

    Google Scholar 

  • Tomme, P, Heriban, V & Claeyssens, M (1990) Adsorption of two cellobiohydrolases from Trichoderma reesei to Avicel: evidence for ‘exo-exo’ synergism and possible ‘loose complex’ formation. Biotech. Lett. 121: 525–530

    Google Scholar 

  • Tomme, P, McCrae, SI, Wood, TM & Claeyssens, M (1988a) Chromatographic separation of cellulolytic enzymes. In: Wood, WA & Kellog, ST (Eds) Methods in Enzymology. Vol 160 (pp 187–193). Academic Press, New York

    Google Scholar 

  • Tomme, P, Van Tilbeurgh, H, Pettersson, G, Van Damme, J, Vandekerckhove, J, Knowles, JKC, Teeri, TT & Claeyssens, M (1988b) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur. J. Biochem. 170: 575–581

    Google Scholar 

  • Van Arsdell, JN, Kwok, S, Schweickart, VL, Ladner, MB, Gelfand, DH & Innis, MA (1987) Cloning, characterization and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei. Bio/Technol. 4: 60–64

    Google Scholar 

  • Van Tilbeurgh, H, Claeyssens, M & de Bruyne, CK (1982) The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett. 149: 152–156

    Google Scholar 

  • Van Tilbeurgh, H, Bhikhabhai, R, Pettersson, LG & Claeyssens, M (1984) Separation of endo- and exo-type cellulases using a new affinity chromatography method. FEBS Lett. 169: 215–218

    Google Scholar 

  • Van Tilbeurgh, H, Tomme, P, Claeyssens, M, Bhikhabhai, R & Pettersson, G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 204: 223–227

    Google Scholar 

  • Warren, RAJ, Beck, CF, Gilkes, NR, Kilburn, DG & Langsford, M (1986) Sequence conservation and region shuffling in an endoglucanase and an exoglucanase from Cellulomonas fimi. Proteins Struct. Funct. Genet. 1: 335–341

    Google Scholar 

  • White, AR & Brown, RM (1981) Ehzymatic hydrolysis of cellulose: Visual characterization of the process. Proc. Nat. Acad. Sci. U.S.A. 78: 1047–1051

    Google Scholar 

  • Wilters, SG, Dombroski, D, Beaven, LA, Kilburn, DG, Miller, RC Jr, Warren, RAJ & Gilkes, NR (1986) Direct 1H NMR determination of the stereochemical course of hydrolysis catalyzed by glucanase components of the cellulase complex. Biochem. Biophys. Res. Commun. 139: 487–494

    Google Scholar 

  • Wood, TM (1975) Properties and mode of action of cellulases. Biotechnol. Bioeng. Symp. 5: 111–137

    Google Scholar 

  • (1989) Mechanisms of cellulose degradation by enzymes from aerobic and anaerobic fungi. In: Coughlan, MP (Ed) Enzyme Systems in Lignocellulose degradation (pp 17–35). Elsevier Applied Science, London

    Google Scholar 

  • (1990) Fungal cellulases. In: Weimer, PJ & Hagler, CA (Eds) Biosynthesis and Biodegradation of Cellulose and Cellulosic Materials. Marcel Dekker, New York (in press)

    Google Scholar 

  • Wood, TM & McCrae, SI (1972) The purification and properties of the C1 component of Trichoderma koningii cellulase. Biochem. J. 128: 1183–1192

    Google Scholar 

  • (1979) Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser. 181: 181–209

    Google Scholar 

  • (1986a) Purification and properties of a cellobiohydrolase from Penicillium pinophilum. Carbohyd. Res. 148: 331–334

    Google Scholar 

  • (1986b) The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically-distinct cellobiohydrolases. Biochem. J. 234: 93–99

    Google Scholar 

  • Wood, TM, McCrae, SI & Bhat, KM (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem. J. 260: 37–43

    Google Scholar 

  • Wood, TM, McCrae, SI & MacFarlane, CC (1980) The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase. Biochem. J. 189: 51–65

    Google Scholar 

  • Wood, TM, McCrae, SI, Wilson, CA, Bhat, KM & Gow, LA (1988) Aerobic and anaerobic fungal cellulases, with special reference to their mode of attack on crystalline cellulose. In: Aubert, JP, Béguin, P & Millet, J (Eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 31–52). Academic Press, London

    Google Scholar 

  • Woodward, J, Hayes, MK & Lee, NL (1988b) Hydrolysis of cellulose by saturating and non-saturating concentration of cellulase: implications for synergism. Bio/Technol. 6: 301–304

    Google Scholar 

  • Woodward, J, Lima, M & Lee, NL (1988a) The rôle of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem. J. 255: 895–899

    Google Scholar 

  • Wu, JDH, Orme-Johnson, WH & Demain, AL (1988) Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochem. 27: 1703–1709

    Google Scholar 

  • Yablonsky, MD, Bartley, T, Elliston, KO, Kahrs, SK, Shalita, ZP & Eveleigh, DE (1988) Characterization and cloning of the cellulase complex of Microbispora bispora. In: Aubert, JP, Béguin, P & Millet, J (Eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 249–266). Academic Press, London

    Google Scholar 

  • Yablonsky, MD, Elliston, KO & Eveleigh, DE (1989) The relationship between the endoglucanase gene MbcelA of Microbispora bispora and cellulase genes of Cellulomonas fimi. In: Coughlan, MP (Ed) Enzyme System for Lignocellulose Degradation (pp 73–83). Elsevier Applied Science, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, T.M., Garcia-Campayo, V. Enzymology of cellulose degradation. Biodegradation 1, 147–161 (1990). https://doi.org/10.1007/BF00058833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058833

Key words

Navigation