Skip to main content
Log in

Estimation of second-order properties from jittered time series

  • Time Series
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper considers spectral and autocovariance estimation for a zero-mean, band-limited, stationary process that has been sampled at time points jittered from a regular, equi-interval, sampling scheme. The case of interest is where the sampling scheme is near regular so that the jitter standard deviation is small compared to the sampling interval. Such situations occur with many time series collected in the physical sciences including, in particular, oceanographic profiles.

Spectral estimation procedures are developed for the case of independent jitter and autocovariance estimation procedures for both independent and dependent jitter. These are typically modifications of general estimation procedures proposed elsewhere, but tailored to the particular jittered sampling scheme considered. The theoretical properties of these estimators are developed and their relative efficiencies compared.

The properties of the jittered sampling point process are also developed. These lead to a better understanding, in this situation, of more general techniques available for processes sampled by stationary point processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1960). The effect of timing error on the power spectrum of sampled data, Ann. Inst. Statist. Math., 11, 145–165.

    Google Scholar 

  • Akaike, H. and Ishiguro, M. (1980). Trend estimation with missing observations, Ann. Inst. Statist. Math., 32, 481–488.

    Google Scholar 

  • Balakrishnan, A. V. (1962). On the problem of time jitter in sampling, Institute of Radio Engineers Transactions on Information Theory, 8, 226–236.

    Google Scholar 

  • Brillinger, D. R. (1972). The spectral analysis of stationary interval functions, Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability (ed. L.LeCam, J.Neyman and E. L.Scott), 483–513, University of California Press, Berkeley.

    Google Scholar 

  • Brillinger, D. R. (1983). Statistical inference for irregularly observed processes, Time Series Analysis of Irregularly Observed Data, Lecture Notes in Statist., 25, 38–57, Springer, New York.

    Google Scholar 

  • Cox, D. R. and Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events, Methuen, London.

    Google Scholar 

  • Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes, Springer, New York

    Google Scholar 

  • Ibragimov, I. A. and Rozanov, Y. A. (1978). Gaussian Random Processes, Springer, New York.

    Google Scholar 

  • Jones, R. H. (1971). Spectrum estimation with missing observations, Ann. Inst. Statist. Math., 23, 387–398.

    Google Scholar 

  • Lawrance, A. J. (1972). Some models for stationary series of univariate events, Stochastic Point Processes (ed. P. A. W.Lewis), 199–255, Wiley, New York.

    Google Scholar 

  • Lewis, T. (1961). The intervals between regular events displaced in time by independent random deviations of large dispersion, J. Roy. Statist. Soc. Ser. B, 23, 476–483.

    Google Scholar 

  • Lii, K.-S. and Masry, E. (1992). Model fitting for continuous-time stationary processes from discrete-time data, J. Multivariate Anal., 41, 56–79.

    Google Scholar 

  • Masry, E. (1978). Alias-free sampling: an alternative conceptualization and its applications, IEEE Trans. Inform. Theory, 24, 317–324.

    Google Scholar 

  • Masry, E. (1983a). Non-parametric covariance estimation from irregularly-spaced data, Advances in Applied Probability Theory, 15, 113–132.

    Google Scholar 

  • Masry, E. (1983b). Spectral and probability density estimation from irregularly observed data, Time Series Analysis of Irregularly Observed Data, Lecture Notes in Statist., 25, 225–250, Springer, New York.

    Google Scholar 

  • Moore, M. I. and Thomson, P. J. (1991). Impact of jittered sampling on conventional spectral estimates, Journal of Geophysical Research, 96, 1.519–18.526.

    Google Scholar 

  • Moore, M. I., Visser, A. W. and Shirtcliffe, T. G. L. (1987). Experiences with the Brillinger spectral estimator applied to simulated irregularly observed processes, J. Time Ser. Anal., 8, 433–442.

    Google Scholar 

  • Moore, M. I., Thomson, P. J. and Shirtcliffe, T. G. L. (1988). Spectral analysis of ocean profiles from unequally spaced data, Journal of Geophysical Research, 93, 655–664.

    Google Scholar 

  • Moran, P. A. P. (1950). Numerical integration by systematic sampling, Proceedings of the Cambridge Philosophical Society, 46, 111–115.

    Google Scholar 

  • Parzen, E. (1957). On consistent estimates of the spectrum of a stationary time series, Ann. Math. Statist., 28, 329–348.

    Google Scholar 

  • Parzen, E. (ed.) (1983). Time Series Analysis of Irregularly Observed Data, Lecture Notes in Statist., 25, Springer, New York.

    Google Scholar 

  • Robinson, P. M. (1980). Continuous model fitting from discrete data, Directions in Time Series (ed. D. R.Brillinger and G. C.Tiao), 263–278, Institute of Mathematical Statistics, California.

    Google Scholar 

  • Robinson, P. M. (1984). Kernel estimation and interpolation for time series containing missing observations, Ann. Inst. Statist. Math., 36, 403–417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Thomson, P.J., Robinson, P.M. Estimation of second-order properties from jittered time series. Ann Inst Stat Math 48, 29–48 (1996). https://doi.org/10.1007/BF00049287

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049287

Key words and phrases

Navigation