Skip to main content
Log in

Partitioning of trace metals in sediments: Relationships with bioavailability

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

As a result of complex physical, chemical and biological processes, a major fraction of the trace metals introduced into the aquatic environment is found associated with the bottom sediments, distributed among a variety of physico-chemical forms. As these different metal forms will generally exhibit different chemical reactivities, the measurement of the total concentration of a particular metal provides little indication of potential interactions with the abiotic or biotic components present in the environment. In principle, the partitioning of sediment-bound metals could be determined both by thermodynamic calculations (provided equilibrium conditions prevail) and by experimental techniques. The modelling of sediment-bound metals is far less advanced than is that of dissolved species, primarily because the thermodynamic data needed for handling sediment-interstitial water systems are not yet available. The partitioning of a metal among various fractions obtained by experimental techniques (e.g., sequential extraction procedures) is necessarily operationally defined. These methods have, however, provided significant insight into the physico-chemical factors influencing the bioavailability of particulate trace metals; some of these factors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balistrieri, L. S. & J. W. Murray, 1982. The adsorption of Cu, Pb, Zn and Cd on goethite from major ion seawater. Geochim. Cosmochim. Acta 46: 1253–1265.

    Google Scholar 

  • Benjamin, M. M. & J. O. Leckie, 1981a. Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 79: 209–221.

    Google Scholar 

  • Benjamin, M. M. & J. O. Leckie, 1981b. Competitive adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 83: 410–419.

    Google Scholar 

  • Campbell, P. G. C. & A. Tessier, 1984. Paleolimnological approaches to the study of acid deposition: metal partitioning in lacustrine sediments. In Proceedings U.S. EPA Workshop on Paleolimnological studies of the history and effects of acidic precipitation. S.A. Norton (ed.), Rockport, Maine, pp. 234–274.

    Google Scholar 

  • Chao, T. T., 1972. Selective dissolution of manganese oxides from soils and sediments with acidic hydroxylamine hydrochloride. Soil Sci. Soc. Amer. Proc. 36: 764–768.

    Google Scholar 

  • Chao, T. T. & P. K. Theobald, 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Econ. Geol. 71: 1560–1569.

    Google Scholar 

  • Chester, R. & M. J. Hughes, 1967. A chemical technique for separation of ferromanganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem. Geol. 2: 249–262.

    Google Scholar 

  • Cooper, B. S. & R. C. Harris, 1974. Heavy metals in organic phases of river and estuarine sediment. Mar. Pollut. Bull. 5: 24–26.

    Google Scholar 

  • Crosby, S. A., D. R. Glasson, A. H. Cuttler, I. Butler, D. R. Turner, M. Whitfield & G. E. Millward, 1983. Surface areas and porosities of Fe(III)- and Fe(II)-derived oxyhydroxides. Environ. Sci. Technol. 17: 709–713.

    Google Scholar 

  • Davis, J. A. & J. O. Leckie, 1978. Surface ionization and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J. Colloid Interface Sci. 67: 90–107.

    Google Scholar 

  • Deurer, R., U. Förstner & G. Schmoll, 1978. Selective chemical extraction of carbonate-associated metals from recent lacustrine sediments. Geochim. Cosmochim. Acta 42: 425–427.

    Google Scholar 

  • Diks, D. M. & H. E. Allen, 1983. Correlation of copper distribution in a freshwater-sediment system to bioavailability. Bull. Environm. Contam. Toxicol. 30: 37–43.

    Google Scholar 

  • Engler, R. M., J. M. Brannon, J. Rose & G. Bigham, 1977. A practical selective extraction procedure for sediment characterization. In Chemistry of marine sediments. T. F. Yen (ed.), Ann Arbor Sci. Publ. Inc., Ann Arbor, pp. 163–180.

    Google Scholar 

  • Farrah, H. & W. F. Pickering, 1979. pH effects in the adsorption of heavy metal ions by clays. Chem. Geol. 2: 317–326.

    Google Scholar 

  • Förstner, U., 1982. Accumulative phases for heavy metals in limnic sediments. Hydrobiologia 91: 269–284.

    Google Scholar 

  • Förstner, U. & G. T. W. Wittmann, 1981. Metal Pollution in the Aquatic Environment. 2nd edition, Springer-Verlag, Berlin, 486 pp.

    Google Scholar 

  • Gibbs, R. J., 1973. Mechanisms of trace metal transport in rivers. Science 180: 71–73.

    Google Scholar 

  • Gupta, S. K. & K. Y. Chen, 1975. Partitioning of trace metals in selective chemical fractions of near-shore sediments. Environ. Lett. 10: 129–158.

    Google Scholar 

  • Hem, J. D., 1972. Chemistry and occurrence of cadmium and zinc in surface water and groundwater. Water Resour. Res. 8: 661–679.

    Google Scholar 

  • Hem, J. D., 1976. Geochemical controls on lead concentrations in stream water and sediments. Geochim. Cosmochim. Acta 40: 599–609.

    Google Scholar 

  • Holmgren, G. S., 1967. A rapid citrate-dithionite extractable iron procedure. Soil Sci. Soc. Amer. Proc. 31: 210–211.

    Google Scholar 

  • Jackson, M. L., 1958. Soil Chemical Analysis. Prentice Hall, Engelwood Cliffs, N.J., 498 pp.

    Google Scholar 

  • Khalid, R. A., R. P. Gambrell & W. H. Patrick, 1981. Chemical availability of cadmium in Mississippi River sediment. J. Environ. Qual. 10: 523–528.

    Google Scholar 

  • Langston, W. J., 1980. Arsenic in U.K. estuarine sediments and its availability to deposit-feeding bivalves. J. Mar. Biol. Ass. U.K. 60: 869–881.

    Google Scholar 

  • Langston, W. J., 1982. Distribution of mercury in British estuarine sediments and its availability to deposit-feeding-bivalves. J. Mar. Biol. Ass. U.K. 62: 667–684.

    Google Scholar 

  • Lion, L. W., R. S. Altmann & J. O. Leckie, 1982. Trace-metal adsorption characteristics of estuarine particulate matter: evaluation of contribution of Fe/Mn oxide and organic surface coatings. Environ. Sci. Technol., 16: 660–666.

    Google Scholar 

  • Loganathan, P. & R. G. Burau, 1973. Sorption of heavy metal ions by a hydrous manganese oxide. Geochim. Cosmochim. Acta 37: 1277–1293.

    Google Scholar 

  • Luoma, S. N. & G. W. Bryan, 1978. Factors controlling the availability of sediment-bound lead to the estuarine bivalve Scrobicularia plana. J. Mar. Biol. Ass. U.K. 58: 793–802.

    Google Scholar 

  • Luoma, S. N. & G. W. Bryan, 1982. A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve Scrobicularia plana and the polychaete Nereis diversicolor. Estuar. Coast. Shelf Sci. 15: 95–108.

    Google Scholar 

  • Luoma, S. N. & J. A. Davis, 1983. Requirements for modelling trace metal partitioning in oxidized estuarine sediments. Mar. Chem. 12: 159–181.

    Google Scholar 

  • Luoma, S. N. & E. A. Jenne, 1977. The availability of sediment-bound cobalt, silver, and zinc to a deposit-feeding clam. In Biological implications of metals in the environment. R. E. Wildung & H. Drucker (eds.), Technical Information Center, Energy Research and Development Administration, Washington, D.C., pp. 213–230.

    Google Scholar 

  • Millward, G. E. & R. M. Moore, 1982. The adsorption of Cu, Mn and Zn by iron oxyhydroxide in model estuarine solutions. Water Res. 16: 981–985.

    Google Scholar 

  • Murray, J. E., 1975. The interaction of metal ions at the manganese dioxide-solution interface. Geochim. Cosmochim. Acta 39: 505–519.

    Google Scholar 

  • Oakley, S. M., P. O. Nelson & K. J. Williamson, 1981. Model of trace-metal partitioning in marine sediments. Environ. Sci. Technol. 15: 474–480.

    Google Scholar 

  • Patchineelam, S. R., 1975. Untersuchungen über die Hauptbindungsarten und die Mobilisierbarkeit von Schwermetallen in fluviatilen Sedimenten. Thesis, Univ. Heidelberg, 137 pp.

  • Rapin, F. & U. Förstner, 1983. Sequential leaching techniques for particulate metal speciation: the selectivity of various extractants. Proceedings of the 4th International Conference on Heavy Metals in the Environment, Heidelberg, CEP Consultants Ltd., (ed.), Edinburgh, U.K., pp. 1074–1077.

  • Rapin, F., A. Tessier, P. G. C. Campbell & R. Carignan, 1986. Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Environ. Sci. Technol. 20: 836–840.

    Google Scholar 

  • Rendell, P. S., G. E. Batley & A. J. Cameron, 1980. Adsorption as a control of metal concentrations in sediment extracts. Environ. Sci. Technol. 14: 314–318.

    Google Scholar 

  • Schindler, P. W., 1967. Heterogeneous equilibria involving oxides, hydroxides, carbonates, and hydroxide carbonates. In Equilibrium concepts in natural water systems. W. Stumm (ed.), Amer. Chem. Soc., Adv. Chem. Ser., Vol. 67, Washington, D.C. pp. 196–221.

  • Schindler, P. W., 1975. Removal of trace metals from the oceans: a zero order model. Thalassia Jugoslavica 11: 101–111.

    Google Scholar 

  • Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit sauerer Ammoniumoxalat-Lösung. Z. Pflanzenernähr. Düng. Bodenkde 105: 194–202.

    Google Scholar 

  • Sigg, L., W. Stumm & B. Zinder, 1984. Chemical processes at the particulate-water interface: implications concerning the form of occurrence of solute and adsorbed species. In Complexation of trace metals in natural waters. C. J. M. Kramer & J. C. Duinker (eds.), Nijhoff & Junk Publishers, The Hague, pp. 251–266.

    Google Scholar 

  • Stover, R. C., L. E. Sommers & D. J. Silviera, 1976. Evaluation of metals in wastewater sludges. J. Water Pollut. Contr. Fed. 48: 2165–2175.

    Google Scholar 

  • Swallow, K. C., D. N. Hume & F. M. M. Morel, 1980. Sorption of copper and lead by hydrous ferric oxide. Environ. Sci. Technol. 14: 1326–1331.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell & M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844–851.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell & J. C. Auclair, 1983. Relationships between trace metal partitioning in sediments and their bioaccumulation in freshwater pelecypods. Proceedings of the 4th International Conference on Heavy Metals in the Environment, Heidelberg, CEP Consultants Ltd., (ed.), Edinburgh, U.K., pp. 1086–1089.

  • Tessier, A., P. G. C. Campbell, J. C. Auclair & M. Bisson, 1984a. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Can. J. Fish. Aquat. Sci. 41: 1463–1472.

    Google Scholar 

  • Tessier, A., F. Rapin & R. Carignan, 1984b. Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim. Cosmochim. Acta 49: 183–194.

    Google Scholar 

  • Volkov, I. I. & L. S. Fominia, 1974. Influence of organic material and processes of sulphide formation on distribution of some trace elements in deep-water sediments of the Black Sea. Amer. Assoc. Pet. Geol. Mem. 20: 456–476.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tessier, A., Campbell, P.G.C. Partitioning of trace metals in sediments: Relationships with bioavailability. Hydrobiologia 149, 43–52 (1987). https://doi.org/10.1007/BF00048645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048645

Keywords

Navigation