Skip to main content
Log in

Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

On 25 and 26 October 1986 the air in Cambridge, Massachusetts was monitored for O2 and CO2 mole fraction. O2 concentrations were detected from changes in the relative refractivity of dried air between two lines of 198Hg at 2537.269 and 4359.562 Å using dual-wavelength interferometry. Changes in oxygen mole fraction were resolved with two-minute time resolution to a precision of ±2.0 ppm. Changes in O2 were shown to be strongly anticorrelated with changes in CO2 as expected for combustion processes. The demonstrated instrumental capabilities are appropriate for measuring changes in O2 mole fraction in background air which could be of importance to a broad range of biogeochemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bacastow, R. B., Adams, J. A., Keeling, C. D., Moss, D. J., Worf, T. P., and Wong, C. S., 1980, Atmospheric carbon dioxide, the southern oscillation, and the weak 1975 El Nino, Science 210, 66–68.

    Google Scholar 

  • Benedict, F. G., 1912, The Composition of the Atmosphere with Special Reference to its Oxygen Content, Carnegie Institution of Washington, Washington, D.C.

    Google Scholar 

  • Broecker, W. S., Takahashi, T., Simpson, H. J., Peng, T.-H., 1979, Fate of fossil fuel carbon dioxide and the global carbon budget, Science 206(4417), 409–418.

    Google Scholar 

  • Broecker, W. S. and Peng, T.-H., 1982, Tracers in the Sea, Lamont-Doherty Geological Observatory, Palisades, New York.

    Google Scholar 

  • Carpenter, T. M., 1937, The constancy of the atmosphere with respect to carbon dioxide and oxygen content, J. Amer. Chem. Soc. 59, 358–360.

    Google Scholar 

  • Cardwell, L. E., Benton, L. F., 1971, U.S. Bureau of Mines Information Circular 8518, Analysis of Natural Gases.

  • Cuthbertson, C. and Cuthbertson, M., 1920, On the refraction and dispersion of carbon dioxide, carbon monoxide, and methane, Proc. Royal Soc. London, Series A 97, 152–159.

    Google Scholar 

  • Cuthbertson, C. and Cuthbertson, M., 1932, The refraction and dispersion of neon and helium, Proc. Royal Soc. London, Series A 135, 40–47.

    Google Scholar 

  • Enting, I. G. and Pearman, G. I., 1987, Description of a one-dimensional carbon cycle model calibrated using techniques of constrained inversion, Tellus 39B, 459–476.

    Google Scholar 

  • Eppley, R. W. and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature 282, 677–680.

    Google Scholar 

  • Fung, I., Prentice, K., Matthews, E., Lerner, J., and Russel, G., 1983, Three-dimensional tracer model study of atmospheric CO2: response to seasonal exchanges with the terrestrial biosphere, J. Geophys. Res. 88 (C2), 1281–1294.

    Google Scholar 

  • Giese, A. C., 1973, Cell Physiology, 4th edn., W. B. Saunders, Philadelphia.

    Google Scholar 

  • Glueckauf, E., 1951, The composition of atmospheric air, in T. Malone (ed.) Compendium of Meteorology, American Meteorological Society, Boston, pp. 3–10.

    Google Scholar 

  • Heimann, M., Keeling, C. D., and Fung, I. Y., 1986, Simulating the atmospheric carbon dioxide distribution with a three dimensional tracer model, in J. R. Trabalka and D. E. Reichle (eds.), The Changing Carbon Cycle: A Global Analysis, Springer Verlag, New York, pp. 16–49.

    Google Scholar 

  • Hill, N. E., Vaughan, W. E., Price, A. H., and Davies, M., 1969, Dielectric Properties and Molecular Behaviour, Van Nostrand Reinhold, London.

    Google Scholar 

  • Holey, T., Environmental Protection Agency, Air Management Division, Personal communication.

  • Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., Skole, D. L., Myers, N., 1987, The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux, Tellus 39B, 122–139.

    Google Scholar 

  • Hughes, E. E., 1968, A simple technique for the absolute determination of atmospheric oxygen, Environ. Sci. Technol. 2 (3), 201–203.

    Google Scholar 

  • Jenkins, W. J. and Goldman, J. C., 1985. Seasonal oxygen cycling and primary production in the Sargasso Sea, J. Marine Res. 43, 465–491.

    Google Scholar 

  • Kaufman, V., 1962, Wavelengths, energy levels, and pressure shifts in mercury 198, J. Opt. Soc. Amer. 52(8), 866–870.

    Google Scholar 

  • Keeling, C. D., Bacastow, R. B., and Whorf, T. P., 1982, Measurements of the concentration of carbon dioxide at Mauna Loa Observatory, Hawaii, in W. C. Clark (ed.), Carbon Dioxide Review: 1982, Oxford University Press, New York, pp. 377–385.

    Google Scholar 

  • Keeling, C. D., Carter, A. F., and Mook, W. G., 1984, Seasonal, latitudinal and secular variations in the abundance and isotopic ratios of atmospheric CO2. 2. Results from oceanic cruises in the tropical Pacific Ocean, J. Geophys. Res. 89(D3), 4615–4628.

    Google Scholar 

  • Keeling, R. F., 1988, Development of an interferometric oxygen analyzer for precise measurement of the atmospheric O2 mole fraction, PhD Thesis, Harvard Univ.

  • Kerl, K., 1982, Determination of mean molecular polarizabilities and second virial coefficients of gases by scanning-wavelength interferometry, Zeit Physik. Chem. Neue Folge 129, 129–148.

    Google Scholar 

  • Khalil, M. A. K., and Rasmussen, R. A., 1986, Interannual variability of atmospheric methane: possible effects of the El Niño-Southern Oscillation, Science 232, 56–57.

    Google Scholar 

  • Koch, J., 1949, On the refraction and dispersion of the noble gases krypton and xenon, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar 19(13), 173–187.

    Google Scholar 

  • Komhyr, W. D., Gammon, R. H., Harris, T. B., Waterman, L. S., Conway, T. J., Taylor, W. R., Thoning, K. W., 1985, Global Atmospheric CO2 distribution and variations from 1968–1982 NOAA/GMCC CO2 flask sample data, J. Geophys. Res. 90(D3), 5567–5596.

    Google Scholar 

  • Krogh, A., 1919, The composition of the atmosphere, Det Kgl. Danske Videnskabernes Selskab. 1, No. 12.

  • Ladenburg, R. and Wolfsohn, G., 1932, Untersuchungen über die Dispersion von Gasen und Dämpfen and ihre Darstellung durch die Dispersiontheorie. II. Die Dispersion des Sauerstoffs zwischen 6000 und 1920 Å, Zeit. Physik, 79, 42–60.

    Google Scholar 

  • Lockhart, E. E. and Court, A., 1942, Oxygen deficiency in Antarctic air, Monthly Weath. Rev. 70(5), 93–96

    Google Scholar 

  • Logan, J. A., 1985, Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence, J. Geophys. Res. 90(D6), 10463–10482.

    Google Scholar 

  • Machta, L. and Hughes, E., 1970, Atmospheric Oxygen in 1967 to 1970, Science 168, 1582–1584.

    Google Scholar 

  • Machta, L. E., 1980, Oxygen depletion, in Jacoby (ed.), Carbon Dioxide Effects Research and Assessment Program: Proceedings of the International Meeting on Stable Isotopes in Tree-Ring Research, U.S. Dept. of Energy, pp. 125–127.

  • Mansfield, C. R. and Peck, E. R., 1969, Dispersion of helium, J. Opt. Soc. Amer. 59(2), 199–204.

    Google Scholar 

  • Marks, L. E. (ed.), 1967, Mechanical Engineers' Handbook, 7th edn. McGraw-Hill, New York.

    Google Scholar 

  • Marland, G. and Rotty, R. M., 1984, Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950–1982, Tellus 36 B, 232–261.

    Google Scholar 

  • Mook, W. G., Koopmans, M., Carter, A. F., and Keeling, C. D., 1983, Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide 1. Results from land stations, J. Geophys. Res. 88(C15), 10915–10933.

    Google Scholar 

  • Neftel, A., Moor, E., Oeschger, H., Stauffer, B., 1985, Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature 315, 45–47.

    Google Scholar 

  • NOAA, 1976, U.S. Standard Atmosphere, 1976, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, United States Air Force, Washington, D.C.

    Google Scholar 

  • Old, J. G., Gentili, K. L., and Peck, E. R., 1971, Dispersion of carbon dixide, J. Opt. Soc. Amer. 61(1), 89–90.

    Google Scholar 

  • Owens, J. C., 1967, Optical refractive index of air: dependence on pressure, temperature and composition, Appl. Opt. 6(1), 51–59.

    Google Scholar 

  • Pearman, G. I. and Hyson, P., 1980, Activities of the global biosphere as reflected in atmospheric CO2 records, J. Geophys. Res. 85(C8), 4468–4474.

    Google Scholar 

  • Peck, E. R. and Fisher, D. J., 1964, Dispersion of argon, J. Opt. Soc. Amer. 54(11), 1362–1364.

    Google Scholar 

  • Peck, E. R. and Khanna, N., 1966, Dispersion of nitrogen, J. Opt. Soc. Amer. 56(8), 1059–1063.

    Google Scholar 

  • Peng, T.-H. and Broecker, W. S., 1984, Ocean life cycles and the atmospheric CO2 content, J. Geophys. Res. 89(C5), 8170–8180.

    Google Scholar 

  • Peng, T.-H., Takahashi, T., Broecker, W. S., and Olafsson, J., 1987, Seasonal variability or carbon dioxide, nutrients, and oxygen in the northern North Atlantic surface water: observations and a model, Tellus 39B, 439–458.

    Google Scholar 

  • Platt, T., 1984, Primary productivity of the central North Pacific: comparison of oxygen and carbon fluxes, Deep Sea Res. 31(11), 1311–1319.

    Google Scholar 

  • Sexton, K. and Westberg, H., 1984, Nonmethane hydrocarbon composition of urban and rural atmospheres, Atmos. Environ. 18(6), 1125–1132.

    Google Scholar 

  • Shepherd, M., 1935, The composition of the atmosphere at approximately 21.5 kilometers, U.S. Army Stratosphere Flight of 1935 in Balloon Explorer II, National Geographic Soc., Washington D.C., pp. 117–133.

    Google Scholar 

  • Shulenberger, E. and Reid, J. L., 1981, The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered, Deep Sea Res. 28A(9), 901–919.

    Google Scholar 

  • Siegenthaler, U. and Oeschger, H., 1987, Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data, Tellus, 39B, 140–154.

    Google Scholar 

  • Snyder, J. J., Algorithm for fast digital analysis of interference fringes, Appl. Opt. 19(8), 1223–1225.

  • Söderlund, R. and Svennson, B. H., 1976, The global nitrogen cycle, in B. Svensson, and R. Söderlund (eds.), Nitrogen, Phosphorus and Sulphur-Global Cycles, SCOPE Report No. 7, Ecol. Bull. 22, 23–73.

  • Trenberth, K. E., Christy, J. R., and Olson, J. G., 1987, Global atmospheric mass, surface pressure, and water vapor variations, J. Geophys. Res. 92(D12), 14815–14826.

    Google Scholar 

  • Weiss, R., 1981, The temporal and spatial distribution of tropospheric nitrous oxide, J. Geophys. Res. 86(C8), 7185–7195.

    Google Scholar 

  • Zeiss, G. D. and Meath, W. J., 1977, Dispersion energy constants C6 (A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO, and N2O, Molec. Phys. 33(4), 1155–1176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keeling, R.F. Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air. J Atmos Chem 7, 153–176 (1988). https://doi.org/10.1007/BF00048044

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048044

Key words

Navigation