Skip to main content
Log in

Proteolysis in plants: mechanisms and functions

  • Fate of Translation Product
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Proteolysis is essential for many aspects of plant physiology and development. It is responsible for cellular housekeeping and the stress response by removing abnormal/misfolded proteins, for supplying amino acids needed to make new proteins, for assisting in the maturation of zymogens and peptide hormones by limited cleavages, for controlling metabolism, homeosis, and development by reducing the abundance of key enzymes and regulatory proteins, and for the programmed cell death of specific plant organs or cells. It also has potential biotechnological ramification in attempts to improve crop plants by modifying protein levels. Accumulating evidence indicates that protein degradation in plants is a complex process involving a multitude of proteolytic pathways with each cellular compartment likely to have one or more. Many of these have homologous pathways in bacteria and animals. Examples include the chloroplast ClpAP protease, vacuolar cathepsins, the KEX2-like proteases of the secretory system, and the ubiquitin/26S proteasome system in the nucleus and cytoplasm. The ubiquitin-dependent pathway requires that proteins targeted for degradation become conjugated with chains of multiple ubiquitins; these chains then serve as recognition signals for selective degradation by the 26S proteasome, a 1.5 MDa multisubunit protease complex. The ubiquitin pathway is particularly important for developmental regulation by selectively removing various cell-cycle effectors, transcription factors, and cell receptors such as phytochrome A. From insights into this and other proteolytic pathways, the use of phosphorylation/dephosphorylation and/or the addition of amino acid tags to selectively mark proteins for degradation have become recurring themes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel S, Oeller PW, Theologis A: Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91: 326–330 (1994).

    Google Scholar 

  2. Agarwal ML, Cullis CA: The ubiquitin-encoding multigene family of flax, Linum usitatissimum. Gene 99: 69–75 (1991).

    Google Scholar 

  3. Anathan J, Goldberg AL, Vollemy R: Abnormal proteins serve as eukaryotic signals and trigger the activation of heat shock genes. Science 232: 522–524 (1986).

    Google Scholar 

  4. Anbudurai PR, Mor TS, Ohad I, Shestakov SV, Pakrasi HB: The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem II reaction center complex. Proc Natl Acad Sci USA 91: 8082–8086 (1994).

    Google Scholar 

  5. Arfin S Bradshaw R: Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 27: 7979–7990 (1988).

    Google Scholar 

  6. Arnason T, Ellison MJ: Stress resistance in Sacchaomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol 14: 7876–7883 (1994).

    Google Scholar 

  7. Bachmair A, Finley D, Varshavsky A: In vivo half-life of a protein is a function of its amino-terminal residue. Science 234: 179–186 (1986).

    Google Scholar 

  8. Bachmair A, Becker F, Masterson V, Schell J: Pertubation of the ubiquitin system causes leaf curling, vascular tissue alterations, and necrotic lesions in a higher plant. EMBO J 9: 4543–4549 (1991).

    Google Scholar 

  9. Bachmair A, Becker F, Schell J: Use of a reporter transgene to generate Arabidopsis mutants in ubiquitin-dependent proteolysis. Proc Natl Acad Sci USA 90: 418–421 (1993).

    Google Scholar 

  10. Bailly V, Lamb J, Sung P, Prakash S, Prakash L: Specific complex formation between yeast Rad6 and Rad18 proteins: a potential mechanism for targeting Rad6 ubiquitin-conjugating activity to DNA damage sites. Genes Devel 8: 811–820 (1994).

    Google Scholar 

  11. Barr PJ: Mammalian subtilisins: the long sought dibasic processing endoproteases. Cell 66: 1–3 (1991).

    Google Scholar 

  12. Barret AJ: The classes of proteolytic enzymes. In: Dalling MJ (ed) Plant ProteolyticEnzymes, pp. 1–16. CRC Press, Boca Raton, FL (1986).

    Google Scholar 

  13. Bartling D, Rehling P, Weiler EW: Functional expression and molecular characterization of AtUBC2–1, a novel ubiquitin conjugating enzyme (E2) from Arabidopsis thaliana. Plant Mol Biol 23: 387–396 (1993).

    Google Scholar 

  14. Beal R, Deveraux Q, Xia G, Rechsteiner M, Pickart C: Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. Proc Natl Acad Sci USA 93: 861–866 (1996).

    Google Scholar 

  15. Beers E, Moreno TN, Callis JA: Subcellular localization of ubiquitin and ubiquitinated proteins in Arabidopsis. J Biol Chem 267: 15432–15439 (1992).

    Google Scholar 

  16. Bethke PC, Hillmer S, Jones RL: Isolation of intact protein storage vacuoles from barley aleurone. Plant Physiol 110: 521–529 (1996).

    Google Scholar 

  17. Binet M-N, Weil J-H, Tessier L-H: Structure and expression of sunflower ubiquitin genes. Plant Mol Biol 17: 395–407 (1991).

    Google Scholar 

  18. Boller T: Roles of proteolytic enzymes in interactions of plants with other organisms. In: Dalling MJ (ed) Plant Proteolytic Enzymes, pp. 67–96. CRC Press, Boca Raton, FL (1986).

    Google Scholar 

  19. Boston RS, Fontes EBP, Shank BB, Wrobel RL: Increased expression of the maize immunoglobulin binding protein homolog b-70 in three zein regulatory mutants. Plant Cell 3: 497–505 (1991).

    Google Scholar 

  20. Briggs MS, Roder H: Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc Natl Acad Sci USA 89: 2017–2021 (1992).

    Google Scholar 

  21. Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U: Control of IκB-α by site-specific, signal-induced phosphorylation. Science 267: 1485–1488 (1995).

    Google Scholar 

  22. Burke TJ, Callis JA, Vierstra RD: Characterization of a polyubiquitin gene in Arabidopsis thaliana. Mol Gen Genet 213: 435–443 (1988).

    Google Scholar 

  23. Bushnell T, Bushnell D, Jagendorf AT: A purified zinc protease of pea chloroplasts, EP1, degrades the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 103: 585–591 (1993).

    Google Scholar 

  24. Butt TR, Jannalagadda S, Monia B, Sternberg E, Marsh JA, Stadel JM, Ecker DJ, Crooke ST: Ubiquitin fusion augments the yield of cloned gene products in Escherichia coli. Proc Natl Acad Sci USA 86: 2540–2544 (1989).

    Google Scholar 

  25. Callis JA: Regulation of protein degradation. Plant Cell 7: 845–857 (1995).

    Google Scholar 

  26. Callis J, Vierstra RD: Ubiquitin and ubiquitin genes in higher plants. Oxford Surv Plant Mol Cell Biol 6: 1–30 (1989).

    Google Scholar 

  27. Callis JA, Raasch JA, Vierstra RD: Ubiquitin extension proteins in Arabidopsis thaliana: structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265: 12486–12493 (1990).

    Google Scholar 

  28. Callis JA, Carpenter TB, Sun CW, Vierstra RD: Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics 139: 921–939 (1995).

    Google Scholar 

  29. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A: A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243: 1576–1583 (1989).

    Google Scholar 

  30. Chen P, Johnson P, Sommer T, Jentsch S, Hochstrasser M: Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cel 74: 357–369 (1993).

    Google Scholar 

  31. Chen Z, Niles EG, Pickart CM: Isolation of a cDNA encoding a mammalian multiubiquitinating enzyme (E225k) and overexpression of the functional enzyme in Escherichia coli. J Biol Chem 266: 15698–15704 (1991).

    Google Scholar 

  32. Chiang H-L, Terlecky SR, Plant CP, Dice JF: A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382–385 (1989).

    Google Scholar 

  33. Christensen AH, Sharrock RA, Quail PH: Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18: 675–689 (1992).

    Google Scholar 

  34. Ciechanover A: The ubiquitin-proteasome proteolytic pathway. Cell 79: 13–21 (1994).

    Google Scholar 

  35. Collins BA, Reed PD, Rubinstein B: Ubiquitinated proteins in differentiating vascular tissue of Coleus blumei. Plant Physiol 102: 125 (1993).

    Google Scholar 

  36. Cook WJ, Jeffrey LC, Sullivan ML, Vierstra RD: Three-dimensional structure of a ubiquitin conjugating enzyme (E2). J Biol Chem 267: 15116–15121 (1992).

    Google Scholar 

  37. Cook WJ, Jeffrey LC, Carson M, Chen Z, Pickart CM: Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J Biol Chem 267: 16467–16471 (1992).

    Google Scholar 

  38. Cook WJ, Jeffrey LC, Xu Y, Chau V: Tertiary structures of class I ubiquitin-conjugating enzymes are highly conserved: crystal structure of yeast Ubc4. Biochemistry 32: 13809–13817 (1993).

    Google Scholar 

  39. Courtney SE, Rider CC, Stead AD: Changes in protein ubiquitination and the expression of ubiquitin-encoding transcripts in daylily petals during floral development and senescence. Physiol Plant 91: 196–204 (1994).

    Google Scholar 

  40. Crane DI, Kalish JU, Gould SJ: The Pichia pastoris PAS4 gene encodes a ubiquitin-conjugating enzyme required for peroxisome assembly. J Biol Chem 269: 21835–21844 (1994).

    Google Scholar 

  41. Crawford NM: Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859–868 (1995).

    Google Scholar 

  42. Croall DE, DeMartino GN: Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev 71: 813–847 (1991).

    Google Scholar 

  43. Dalling MJ, Nettleton AM: Chloroplast senescence and proteolytic enzymes. In: Dalling MJ (ed) Plant Proteolytic Enzymes, pp. 125–53 CRC Press, Boca Raton, FL (1986).

    Google Scholar 

  44. Davies DD: Physiolocial aspects of protein turnover. In: Coulter D, Partier B (eds) Encyclopedia of Plant Physiology, vol 14A, pp. 189–228. Springer-Verlag, Berlin (1982).

    Google Scholar 

  45. DeMartino GN, Moomaw CR, Zagnitko OP, Proske RJ, Ma C-P, Afendis SJ, Swaffield JC, Slaughter CA: PA700, an ATP dependent activator of the 20S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J Biol Chem 269: 20878–20884 (1994).

    Google Scholar 

  46. Demura T, Fukuda H: Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development. Plant Cell 6: 967–981 (1994).

    Google Scholar 

  47. Desautels M, Goldberg AL: Liver mitochondria contain an ATP-dependent vanadate-sensitive pathway for the degradation of proteins. Proc Natl Acad Sci USA 79: 18691873 (1982).

    Google Scholar 

  48. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M: A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269: 7059–7061 (1994).

    Google Scholar 

  49. Deveraux Q, van Nocker S, Mahaffey D, Vierstra RD, Rechsteiner M: Inhibition of ubiquitin-mediated proteolysis by the Arabidopsis 26S protease subunit S5a. J Biol Chem 270: 29660–29663 (1995).

    Google Scholar 

  50. Dice JF: Molular determinants of protein half-lives in eukaryotic cells. FASEB J 1: 349–357 (1987).

    Google Scholar 

  51. Dick LR, Aldrich C, Jameson SC, Moomaw CR, Pramanik BC, Doyle CK, DeMartino GN, Bevan MJ, Forman JM, Slaughter CA: Proteolytic processing of ovalbumin and-β-galactosidase by the proteasome to yield antigenic peptides. J Immunol 152: 3884–3894 (1994).

    Google Scholar 

  52. Dohmen RJ, Wu P, Varshavsky A: Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263: 1273–1276 (1994).

    Google Scholar 

  53. Dohmen RJ, Stappen R, McGrath JP, Forrova H, Kolarov J, Goffeau A, Varshavsky A: An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 270: 18099–18109 (1995).

    Google Scholar 

  54. Durner J, Boger P: Ubiquitin in the prokaryote Anabaena variabilis. J Biol Chem 270: 3720–3725 (1995).

    Google Scholar 

  55. Ecker DJ, Stadel JM, Butt TR, Marsh JA, Monia BP, Powers DA, Gorman JA, Clark PE, Warren F, Shatzman A, Crooke ST: Increasing gene expression in yeast by fusion to ubiquitin. J Biol Chem. 264: 7715–7719 (1989).

    Google Scholar 

  56. Eising R, Gerhardt B: Catalase degradation in sunflower cotyledons during peroxisome transition from glyoxysomal to leaf peroxisomal function. Plant Physiol 84: 225–232 (1987).

    Google Scholar 

  57. Ellis RE, Yuan J, Horwitz HR: Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663–698 (1991).

    Google Scholar 

  58. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL: Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268: 726–731 (1995).

    Google Scholar 

  59. Fincher GB: Molular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40: 305–346 (1989).

    Google Scholar 

  60. Finley D, Bartel B, Varshavsky A: The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338: 394–401 (1989).

    Google Scholar 

  61. Flannagan JM, Wall JS, Capel MS, Schneider DK, Shanklin JS: Scanning transmission electron microscopy and smallangle scattering provide evidence that native Escherichia coli ClpP is a tetradecamer with an axial pore. Biochemistry 34: 10910–10917 (1995).

    Google Scholar 

  62. Garbarino JE, Rockhold DR, Belknap WR: Expression of stress-responsive ubiquitin genes in potato tubers. Plant Mol Biol 20: 235–244 (1992).

    Google Scholar 

  63. Garbarino JE, Oosumi T, Belknap WR: Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109: 1371–1378 (1995).

    Google Scholar 

  64. Gaszynska M, Rock KL, Goldberg AL: γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365: 264–267 (1993).

    Google Scholar 

  65. Gatenby AA, Viitanen PV: Structural and functional aspects of chaperonin-mediated protein folding. Annu Rev Plant Physiol Plant Mol Biol 45: 469–491 (1994).

    Google Scholar 

  66. Genschik P, Parmentier Y, Durr A, Marbach J, Criqui M-C, Jamet E, Fleck J: Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Mol Biol 20: 897–910 (1992).

    Google Scholar 

  67. Genschik P, Philipps G, Gigot C, Fleck J: Cloning and sequence analysis of a cDNA clone from Arabidopsis thaliana homologous to a proteasome α subunit from Drosophila. FEBS Lett 309: 311–315 (1992).

    Google Scholar 

  68. Genschik P, Durr A, Fleck J: Differential expression of several E2-type ubiquitin-carrier protein genes at different developmental stages of Arabidopsis thaliana and Nicotiana sylvestris. Mol Gen Genet 244: 548–556 (1994).

    Google Scholar 

  69. Genschik P, Jamet E, Philipps, Parmentier Y, Gigot C, Fleck J: Molular characterization of a β-type proteasome subunit from Arabidopsis thaliana co-expressed at high level with an α-type protcasome subunit early in the cell cycle. Plant J 6: 537–546 (1994).

    Google Scholar 

  70. Ghislain M, Udvardy A, Mann C: S. cerevisiae 26S protea-some mutants arrest cell division in G2/metaphase. Nature 366: 358–362 (1993).

    Google Scholar 

  71. Girod P-A, Vierstra RD: A major ubiquitin conjugation system in wheat germ extracts involves a 15-kDa ubiquitin conjugating enzyme (E2) homologous to the yeast UBC4/UBC5 gene products. J Biol Chem 268: 955–960 (1993).

    Google Scholar 

  72. Girod P-A, Carpenter TB, van Nocker S, Sullivan ML, Vierstra RD: Homologs of the essential ubiquitin conjugating enzymes UBC1, 4, and 5 in yeast are encoded by a multigene family in Arabidopsis thaliana. Plant J 3: 545–552 (1993).

    Google Scholar 

  73. Glotzner M, Murray A, Kirschner MW: Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138 (1991).

    Google Scholar 

  74. Goff SA, Goldberg AL: Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell 41: 587–595 (1985).

    Google Scholar 

  75. Goldberg AL: The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem 203: 9–23 (1992).

    Google Scholar 

  76. Goldberg AL: Functions of the proteasome: the lysis at the end of the tunnel. Science 268: 522–523 (1995).

    Google Scholar 

  77. Goldberg AL, St John AC: Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu Rev Biochem 45: 747–803 (1976).

    Google Scholar 

  78. Goldberg AL, Rock KL: Proteolysis, proteasomes and antigen presentation. Nature 357: 375–379 (1992).

    Google Scholar 

  79. Gonen H, Stancovski I, Shkedy D, Hadari T, Bercovich B, Bengal E, Mesilati S, AbuHatoum O, Schwartz AL, Ciechanover A: Isolation, characterization, and partial purification of a novel ubiquitin-protein ligase, E3. J Biol Chem 271: 302–310 (1996).

    Google Scholar 

  80. Gordon C, McGirk D, Dillon P, Rosen C, Hastie ND: Defective mitosis due to a mutation in the gene for a fission yeast 26S proteasome subunit. Nature 366: 355–357 (1993).

    Google Scholar 

  81. Gosink M, Vierstra RD: Redirecting the specificity of ubiquitination through modification of ubiquitin conjugating enzymes (E2s). Proc Natl Acad Sci USA 92: 9117–9121 (1995).

    Google Scholar 

  82. Gottesman S, Squires C, Pichersky E, Carington M, Hobbs M, Mattick JS, Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clark WP, Ross B, Squires CL, Maurizi MR: Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc Natl Acad Sci USA 87: 3513–3517 (1990).

    Google Scholar 

  83. Gottesman S, Clark WP, Crecy-Lagard VD, Maurizi MR: ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli: sequence and in vivo activities. J Biol Chem 268: 22618 (1993).

    Google Scholar 

  84. Granell A, Harris N, Pisabarro AG, Carbonell J: Temporal and spatial expression of a thiolprotease gene during pea ovary senescence and its regulation by gibberellin. Plant 2: 907–915 (1992).

    Google Scholar 

  85. Greenberg JT, Ausubel FM: Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4: 327–341 (1993).

    Google Scholar 

  86. Grey JC, Hird Sm, Dyer TA: Nucleotide sequence of a wheat chloroplast gene encoding the proteolytic subunit of an ATP-dependent protease. Plant Mol Biol 15: 947–950 (1990).

    Google Scholar 

  87. Guarino LA, Smith G, Dong W: Ubiquitin is attached to membranes of Bacuolvirus particles by a novel type of phospholipid anchor. Cell (1995).

  88. Hadir T, Warms JVB, Rose IA, Hershko A: A ubiquitin Cterminal isopeptidase that acts on polyubiquitin chains. J Biol Chem 267: 719–727 (1992).

    Google Scholar 

  89. Hatfield PM, Vierstra RD: Ubiquitin-dependent proteolytic pathway in wheat germ: Isolation of multiple forms of ubiquitin-activating enzyme. Biochemistry 28: 735–742 (1989).

    Google Scholar 

  90. Hatfield PM, Callis J, Vierstra RD: Cloning of ubiquitin activating enzyme from wheat and expression of a functional protein in Escherichia coli. J Biol Chem 265: 15813–15817 (1990).

    Google Scholar 

  91. Hatfield PM, Vierstra RD: Multiple forms of ubiquitin-activating enzyme (E1) from wheat: identification of an essential cysteine by in vitro mutagenesis. J Biol Chem 267: 14799–14803 (1992).

    Google Scholar 

  92. Hatfield PM, Gosink MM, Carpenter TB, Vierstra RD: The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J (submitted).

  93. Heinemeyer W, Gruhler A, Möhrle V, Mahé Y, Wolf D: PRE2, highly homologous to the human major histocompa ibility complex-linked Ring 10 gene, codes for a yeast protea-some unit necessary for chymotryptic activity and degradation of ubiquitinated proteins. J Biol Chem 268: 5115–5120 (1993).

    Google Scholar 

  94. Hensel LL, Grbic V, Baumgarten DA, Bleecker AB: Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5: 553–564 (1993).

    Google Scholar 

  95. Hershko A, Ciechanover A: The ubiquitin system for protein degradation. Annu Rev Biochem 61: 761–807 (1992).

    Google Scholar 

  96. Hicke L, Riezman H: Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84: 277–287 (1996).

    Google Scholar 

  97. Hochstrasser M: Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7: 215–223 (1995).

    Google Scholar 

  98. Holloway SL, Glotzer M, King RW, Murray AW: Anaphase is initiated by proteolysis rather than by inactivation cse maturation-promoting factor. Cell 73: 1393–1402 (1993).

    Google Scholar 

  99. Holwerda BC, Padgett HS, Rogers JC: Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4: 307–318 (1992).

    Google Scholar 

  100. Hondred D, Vierstra RD: Novel applications of the ubiquitins dependent proteolytic pathway in plant genetic engineering. Curr Opin Biotechnol. 3: 147–151 (1992).

    Google Scholar 

  101. Hou D, Cenciarelli D, Jensen JP, Nguyen HB, Weissman AM: Activation-dependent ubiquitination of a T cell antigen receptor subunit on multiple intracellular lysines. J Biol Chem 269: 14244–14247 (1994).

    Google Scholar 

  102. Huang Y, Baker RT, Fischer-Vize JA: Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene. Science 270: 1828–1831 (1995).

    Google Scholar 

  103. Huffaker RC, Peterson LW: Protein turnover in plants and possible means of its regulation. Annu Rev Plant Physiol 25: 363–392 (1974).

    Google Scholar 

  104. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM: A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92: 2563–2567 (1995).

    Google Scholar 

  105. Jabben M, Shanklin J, Vierstra RD: Ubiquitin-phytochrome conjugates: pool dynamics during in vivo phytochrome degradation. J Biol Chem 264: 4998–5005 (1989).

    Google Scholar 

  106. Jabben M, Shanklin J, Vierstra RD: Red light-induced accumulation of ubiquitin-phytochrome conjugates in both moncots and dicots. Plant Physiol 90: 380–384 (1989).

    Google Scholar 

  107. Jack T, Fox GL, Meyerowitz EM: Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76: 703–716 (1994).

    Google Scholar 

  108. Jacobs TW: Cell cycle control. Annu Rev Plant Physiol Plant Mol Biol 46: 317–339 (1995).

    Google Scholar 

  109. Jentsch S: The ubiquitin-conjugation system. Annu Rev Genet 26: 179–207 (1992).

    Google Scholar 

  110. Johnson EM, Schnabelrauch LS, Sears BB: A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins. Mol Gen Genet 225: 106–112 (1991).

    Google Scholar 

  111. Johnson ES, Gonda DK, Varshavsky A: Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346: 287–291 (1990).

    Google Scholar 

  112. Johnson ES, Ma PC, Ota IM, Varshavsky A: A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270: 17442–17456 (1995).

    Google Scholar 

  113. Jones EW: Three proteolytic systems in the yeast Saccharomyces cerevisiae. J Biol Chem 266: 7963–7966 (1991).

    Google Scholar 

  114. Juniper BE, Robins RJ, Joel DM (eds): The Carnivorous Plants. Academic Press, London (1989).

    Google Scholar 

  115. Kaiser WM, Huber SC: Post-translational regulation of nitrate reductase in higher plants. Plant Physiol 106: 817–821 (1994).

    Google Scholar 

  116. Kassenbrock CK, Garcia PD, Walter P, Kelly RB: Heavychain binding protein recognizes aberrant polypeptides translocated in vitro. Nature 333: 90–93 (1988).

    Google Scholar 

  117. Keiler KC, Waller PRH, Sauer RT: Role of peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271: 990–993 (1996).

    Google Scholar 

  118. Kende H: Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44: 283–307 (1993).

    Google Scholar 

  119. Kessel M, Maurizi MR, Kim B, Kocsis E, Trus BL, Singh K, Steven AC: Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26S proteasome. J Mol Biol 250: 587–594 (1995).

    Google Scholar 

  120. Kim WT, Yang SF: Turnover of 1-aminocyclopropane-1-carboxylic acid synthase protein in wounded tomato fruit tissue. Plant Physiol. 100: 1126–1131 (1992).

    Google Scholar 

  121. King RW, Peters J-M, Tugendreich S, Rolfe M, Hieter P, Kirschner MW: A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279–288 (1995).

    Google Scholar 

  122. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K: Characterization of cDNA for a dehydration-inducible gene that encodes a ClpA, B-like protein in Arabidopsis thaliana L. Biochem Biophys Res Commun 196: 1214–1220 (1993).

    Google Scholar 

  123. Klausner RD, Sitia R: Protein degradation in the endoplasmic reticulum. Cell 62: 611–614 (1990).

    Google Scholar 

  124. Koehler SM, Ho T-HD: Hormonal regulation, processing and secretion of cysteine proteinases in barley aleurone layers. Plant Cell 2: 769–783 (1990).

    Google Scholar 

  125. Kornitzer D, Raboy B, Kulka RG, Fink GR: Regulated degradation of the transcription factor Gen4. EMBO J 13: 6021–6030 (1994).

    Google Scholar 

  126. Kuwabara T: Characterization of a prolyl endopeptidase from spinach thylakoids. FEBS Lett 300: 127–130 (1992).

    Google Scholar 

  127. Lee Y-R, Nagao RT, Lin C-Y, Key JL: Induction and regulation of heat-shock gene expression by an amino acid analog in soybean seedlings. Plant Physiol 110: 241–248 (1996).

    Google Scholar 

  128. Leyser HMO, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M: Arabidopsis auxin resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364: 161–164 (1993).

    Google Scholar 

  129. Lin W-C, Desiderio S: Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science 260: 953–958 (1993).

    Google Scholar 

  130. Liu X-Q, Jagendorf AT: ATP-dependent proteolysis in pea chloroplasts. FEBS Lett 166: 248–252 (1984).

    Google Scholar 

  131. Liu X-Q, Jagendorf AT: Neutral peptidases in the stroma of pea chloroplasts. Plant Physiol 81: 603–608 (1986).

    Google Scholar 

  132. Loeb KR, Haas AL: The interferon-inducible 15 kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267: 7806–7813 (1992).

    Google Scholar 

  133. Lohman KN, Gan S, John MC, Amasino RM: Molular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92: 322–328 (1994).

    Google Scholar 

  134. Long JA, Moan EI, Medford JI, MK Barton: A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66–69 (1996).

    Google Scholar 

  135. Löwe J, Stock D, Jap F, Zwickl P, Baumeister W, Huber R: Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268: 533–539 (1995).

    Google Scholar 

  136. Madura K, Varshavsky A: Degradation of Gα by the N-End Rule pathway. Science 265: 1454–1458 (1994).

    Google Scholar 

  137. Malek L, Bogorad L, Ayers AR, Goldberg AL: Newly synthesized proteins are degraded by an ATP-stimulated proteolytic process in isolated pea chloroplasts. FEBS Lett 166: 253–257 (1984).

    Google Scholar 

  138. Mansfield E, Hersperger E, Biggs J, Shearn A: Genetic and molecular analysis of hyperplastic discs, a gene whose product is required for regulation of cell proliferation in Drosophila melanogaster imaginal discs and germ cells. Devel Biol 165: 507–526 (1994).

    Google Scholar 

  139. Matile PH: Protein degradation. In: Coulter D, Partier B (eds) Encyclopedia of Plant Physiology, New Series, Vol. 14A, pp. 169–188, Springer-Verlag, Berlin (1982).

    Google Scholar 

  140. Mattoo AK, Hoffman-Falk H, Marder JB, Edelman M: Regulation of protein metabolism; coupling of photosynthetic electron transport to the in vivo degradation of the rapidly metabolized 32-kilodalton protein in the chloroplast membranes. Proc Natl Acad Sci USA 81: 1380–1384 (1984).

    Google Scholar 

  141. Mauch F, Staehelin LA: Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3 glucanase in bean leaves. Plant Cell 1: 447–457 (1989).

    Google Scholar 

  142. Maurizi MR, Clark WP, Kim SH, Gottesman S: ClpP represents a unique family of serine proteases. J Biol Chem 265: 12456–12552 (1990).

    Google Scholar 

  143. Maurizi MR: Protease and protein degradation in Escherichia coli. Experientia 48: 178–201 (1992).

    Google Scholar 

  144. McGrath JP, Jentsch S, Varshavsky A: UBA1: an essential yeast gene encoding-ubiquitin-activating enzyme. EMBO J 10: 227–236 (1991).

    Google Scholar 

  145. Merchant S, Bogorad L: Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem 261: 15850–15853 (1986).

    Google Scholar 

  146. Mittler R, Lam E: In situ detection of nDNA fragmentation during the differentiation of trachery elements in higher plants. Plant Physiol. 108: 489–493 (1995).

    Google Scholar 

  147. Moore T, Keegstra K: Characterization of a cDNA clone encoding a chloroplast-targeted Clp homologue. Plant Mol Biol 21: 525–537 (1993).

    Google Scholar 

  148. Moriyasu Y: Examination of the contribution of vacuolar proteases to intracellular protein degradation in Chara corallina. Plant Physiol 109: 1309–1315 (1995).

    Google Scholar 

  149. Mullet JE, Gamble-Klein, Klein RR: Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 ad D1 by increasing apoprotein stability. Proc Natl Acad Sci USA 87: 4038–4042 (1990).

    Google Scholar 

  150. Murakami Y, Matsufuji S, Kameji T, Hayashi S-I, Igarashi K, Tamura T, Tanaka K, Ichihara A: Ornithine decarboxylase is degrade by the 26S proteasome without ubiquitination. Nature 360: 597–599 (1992).

    Google Scholar 

  151. Muralidhar MG, Thomas JB: The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes. Neuron 11: 253–266 (1993).

    Google Scholar 

  152. Murray A: Cyclin ubiquitination: the destructive end of mitosis. Cell 81: 149–152 (1995).

    Google Scholar 

  153. Nishizawa M, Furuno N, Okazaki K, Tanaka H, Ogawa Y, Sagata N: Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: possible significance of natural selection for Pro2 in Mos. EMBO J 12: 4021–4027 (1993).

    Google Scholar 

  154. Nussaume L, Vincentz M, Meyer C, Boutin J-P, Caboche M: Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion. Plant Cell 7: 611–621 (1995).

    Google Scholar 

  155. Oblong JE, Lamppa GK: Identification of two structurally related proteins involved in proteolytic processing of precursors targeted to the chloroplast. EMBO J 11: 4401–4409 (1992).

    Google Scholar 

  156. Ozaki M, Fujinami K, Tanaka D, Amemiya Y, Sato T, Ogura N, Nakagawa H: Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem 267: 21678–21684 (1992).

    Google Scholar 

  157. Pagano M, Tam SW, Theodras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M: Role of the ubiquitin proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269: 682–685 (1995).

    Google Scholar 

  158. Palmobella VJ, Rando OJ, Goldberg AL, Maniatis T: The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78: 773–785 (1994).

    Google Scholar 

  159. Papa FR, Hochstrasser M: The yeast DOA4 gene encodes a deubiquitinating enzyme related to the product of the human tre-2 oncogene. Nature 366: 313–319 (1993).

    Google Scholar 

  160. Pearce G, Strydom D, Johnson S, Ryan CA: A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253: 895–898 (1991).

    Google Scholar 

  161. Rechsteiner M, Hoffman L, Dubiel W: The multicatalytic and 26S proteases. J Biol Chem 268: 6065–6068 (1993).

    Google Scholar 

  162. Reddy ASN, Safadi F, Beyette JR, Mykles DL: Calcium-dependent proteinase activity in root cultures of Arabidopsis. Biochem Biophys Res Commun 199: 1089–1095 (1994).

    Google Scholar 

  163. Ribeiro A, Akkermans AD, van Kammen A, Bisseling T, Pawlowski K: A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7: 785–794 (1995).

    Google Scholar 

  164. Rivett AJ: Proteasomes: multicatalytic proteinase complexes. Biochem J 291: 1–10 (1993).

    Google Scholar 

  165. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL: Inhibitors of the proteasome block degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761–771 (1994).

    Google Scholar 

  166. Ryan CA: Proteolytic enzymes and their inhibitors in plants Annu Rev Plant Physiol 24: 173–196 (1973).

    Google Scholar 

  167. Schaller A, Ryan CA: Identification of a 50 kDa systemin-binding protein in tomato plasma membranes having Kex2-like properties. Proc Natl Acad Sci USA 91: 11802–11806 (1994).

    Google Scholar 

  168. Schaller A, Bergey DR, Ryan CE: Induction of wound response genes in tomato leaves by bestatin, an inhibitor of amino peptidases. Plant Cell 7: 1893–1898 (1995).

    Google Scholar 

  169. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM: The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in ubiquitination of p53. Cell 75: 495–505 (1993).

    Google Scholar 

  170. Scheffner M, Nuber U, Hulbregtse JM: Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin-thioester cascade. Nature 363: 81–83 (1995).

    Google Scholar 

  171. Schliephacke M, Kremp A, Schmid H-P, Kull U: Prosomes (proteasomes) of higher plants. Eur J Cell Biol 55: 114–121 (1991).

    Google Scholar 

  172. Schmidt GW, Mishkind ML: Rapid degradation of unassembled ribulose 1,5-bisphosphate carboxylase small subunit in chloroplasts. Proc Natl Acad Sci USA 80: 2632–2636 (1993).

    Google Scholar 

  173. Schwob E, Böhm T, Mendenhall MD, Nasmyth K: The B-type cyclin kinase inhibitor p40 SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79: 233–244 (1994).

    Google Scholar 

  174. Scornik OA: Role of protein degradation in the regulation of cellular protein content and amino acid pools. FASEB J 43: 1283–1288 (1984).

    Google Scholar 

  175. Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W: Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268: 579–582 (1995).

    Google Scholar 

  176. Seufert W, Jentsch S: In vivo function of the proteasome in the ubiquitin pathway. EMBO J 11: 3077–3080 (1992).

    Google Scholar 

  177. Seufert W, Futcher B, Jentsch S: Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins. Nature 373: 78–81 (1995).

    Google Scholar 

  178. Shanklin J, Jabben M, Vierstra RD: Red light-induced form-ation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation. Proc natl Acad Sci USA 84: 359–363 (1987).

    Google Scholar 

  179. Shanklin J, Jabben M, Vierstra RD: Partial purification and peptide mapping of ubiquitin-phytochrome conjugates from oat. Biochemistry 28: 6028–6034 (1989).

    Google Scholar 

  180. Shanklin J, DeWitt ND, Flanagan JM: The stroma of higher plant plastids contain ClpP and ClpC, functional homologues of Escherichia coli ClpP and ClpA: an archetypal two component ATP-dependent protease. Plant Cell 7: 1713–1722 (1995).

    Google Scholar 

  181. Shirley BW, Goodman HM: An Arabidopsis gene homolgous to mammalian and insect genes encoding the largest proteasome subunit. Mol Gen Genet 241: 586–594 (1993).

    Google Scholar 

  182. Silber KR, Keiler KC, Sauer RT: Tsp: a tail-specific protease that selectively degrades proteins with non-polar C-termini. Proc Natl Acad Sci USA 89: 295–299 (1992).

    Google Scholar 

  183. Spanu P, Grosskopf DG, Felix G, Boller T: The apparent turnover of I-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiol 106: 529–535 (1994).

    Google Scholar 

  184. Spence J, Sadis S, Haas AL, Finley D: A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15: 1265–1273 (1995).

    Google Scholar 

  185. Staswick PE: Storage proteins of vegetative plant tissues. Annu Rev Plant Physiol Mol Biol 45: 303–322 (1994).

    Google Scholar 

  186. Steiner H-Y, Song W, Zhang L, Naider F, Becker JM, Stacey G: An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 6: 1289–1299 (1994).

    Google Scholar 

  187. Sullivan ML, Vierstra RD: A ubiquitin carrier protein from wheat germ is structurally and functionally similar to the yeast DNA repair enzyme encoded by RAD6. Proc Natl Acad Sci USA 86: 9861–9865 (1989).

    Google Scholar 

  188. Sullivan ML, Callis J, Vierstra RD: HPLC resolution of ubiquitin pathway from wheat germ. Plant Physiol 94: 710–716 (1990).

    Google Scholar 

  189. Sullivan ML, Vierstra RD: Cloning of a 16 kDa ubiquitin carrier protein (E2) from wheat and Arabidopsis thaliana: identification of functional domains by in vitro mutagenesis. J Biol Chem 266: 23878–23885 (1991).

    Google Scholar 

  190. Sullivan ML, Carpenter T, Vierstra RD: Homologues of wheat ubiquitin-conjugating enzymes TaUBC1 and TaUBC4 are encoded by small multigene families in Arabidopsis thaliana. Plant Mol Biol 24: 651–661 (1994).

    Google Scholar 

  191. Swindle J, Ajioka J, Eisen H, Sanwal B, Jacquenot C, Browder Z, Buck G: The genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi. EMBO J 7: 1121–1127 (1988).

    Google Scholar 

  192. Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, De Mot R, Baumeister W: The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 5: 766–774 (1995).

    Google Scholar 

  193. Tanahashi N, Tsurumi C, Tamura T, Tanaka K: Molular structures of 20S and 26S proteasomes. Enzyme Protein 47: 241–251 (1993).

    Google Scholar 

  194. Teichert U, Mechlers B, Müller H, Wolf DH: Lysosomal (Vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J Biol Chem 264: 16037–16045 (1989).

    Google Scholar 

  195. Thoma S, Sullivan ML, Vierstra RD: Members of gene families encoding the ubiquitin-conjugating enzymes, AtUBC1-3 and AtUBC4-6, from Arabidopsis are differentially expressed. Plant Mol Biol in press (1986).

  196. Thomas H, Stoddart JL: Leaf senescence. Annu Rev Plant Physiol 31: 83–111 (1980).

    Google Scholar 

  197. Tobias JW, Shrader TE, Rocap G, Varshavsky A: The N-end rule in bacteria. Science 254: 1374–1377 (1991).

    Google Scholar 

  198. Traenckner EB-M, Wilk S, Baeuerle PA: A proteasome inhibitor prevens activation of NF-κB and stabilizes a newly phosphorylated form of IκB that is still bound to NF-κB. EMBO J. 13: 5433–5441 (1994).

    Google Scholar 

  199. Treier M, Staszewski LM, Bohmann D: Ubiquitin-dependent c-jun degradation in vivo is mediated by the δ domain. Cell 78: 787–798 (1994).

    Google Scholar 

  200. van Nocker S, Vierstra RD: Cloning and characterization of a 20-kilodalton ubiquitin-carrier protein (E2) from wheat that catalyzes multi ubiquitin-chain formation in vitro. Proc Natl Acad Sci USA 88: 10297–10301 (1991).

    Google Scholar 

  201. van Nocker S, Vierstra RD: Multiubiquitin chains linked through lysine-48 are abundant in vivo and competent intermediates in the ubiquitin-dependent proteolytic pathway. J Biol Chem 268: 24766–24773 (1993).

    Google Scholar 

  202. van Nocker S, Deveraux Q, Rechsteiner M, Vierstra RD: Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci USA 93: 856–860 (1996).

    Google Scholar 

  203. van Nocker S, Walker JM, Vierstra RD: A multigene family in Arabidopsis thaliana encodes constitutively expressed E2s capable of forming multiubiquitin chains in vitro. J Biol Chem, in press (1996).

  204. van Nocker S, Saddis S, Rubin D, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra RD: The multiubiquitin chain-binding MCB1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential substrate-specific role in protein turnover. Mol Cell Biol, In press (1996).

  205. Varshavsky A: The N-end rule. Cell 69: 725–735 (1992).

    Google Scholar 

  206. Vierstra RD: Demonstration of ATP-dependent, ubiquitin conjugating activities in higher plants. Plant Physiol 84: 332–336 (1987).

    Google Scholar 

  207. Vierstra RD: Protein degradation in plants. Annu Rev Plant Physiol Plant Mol Biol 44: 385–410 (1993).

    Google Scholar 

  208. Vierstra RD: Phytochrome degradation. In: Kendrick RE, Kronenberg GHM (eds.) Photomorphogenesis in Plants, pp. 141–162. Martinus Nijhoff, Dordrecht, Netherlands (1994).

    Google Scholar 

  209. Vierstra RD, Langan SM, Haas AL: Purification and initial characterization of ubiquitin from the higher plant, Avena sativa. J Biol Chem 260: 12015–12021 (1985).

    Google Scholar 

  210. Vijay-Kumar S, Buggs CE, Wilkinson KD, Vierstra RD, Hatfield PM, Cook WJ: Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin. J Biol Chem 262: 6396–6399 (1987).

    Google Scholar 

  211. Weibel FF, Kunau WH: The Pas2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes. Nature 359: 73–76 (1992).

    Google Scholar 

  212. Weissman JS, Sigler PB, Horwich AL: From the cradle to the grave: ring complexes in the life of a protein. Science 268: 523–524 (1995).

    Google Scholar 

  213. Wensel T, Eckerskorn C, Lottspeich F, Baumeister W: Existence of a molecular ruler in proteasomes suggested by analysis of degradation products. FEBS Lett 349: 205–209 (1994).

    Google Scholar 

  214. Wickner S, Gottesman S, Skowyra D, Hoskins J, McKenney K, Maurizi MR: A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci USA 91: 12218–12222 (1994).

    Google Scholar 

  215. Wilkinson KD, Lee K, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J: The neuronspecific protein PGP9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246: 670–673 (1989).

    Google Scholar 

  216. Wilson KA: Role of proteolytic enzymes in the mobilization of protein reserves in the germinating dicot seed. In: Dalling MJ (ed) Plant Proteolytic Enzymes, pp. 19–48. CRC Press, Boca Raton, FL (1986).

    Google Scholar 

  217. Wolf S, Lottspeich F, Baumeister W: Ubiquitin found in the archaebacteria Thermoplasma acidophilum. FEBS Lett 326: 42–44 (1993).

    Google Scholar 

  218. Yaglom J, Linskens MHK, Sadis S, Rubin DM, Futcher B, Finley D: p34Cdc28-mediated control on Cln3 cyclin degradation. Mol Cell Biol 15: 731–741 (1995).

    Google Scholar 

  219. Yamagata H, Masuzawa T, Nagaoka Y, Ohnishi T, Iwasaki T: Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a larger precursor. J Biol Chem 169: 32725–32731 (1994).

    Google Scholar 

  220. Ye Z-H, Varner J: Gene expression patterns associated with in vitro tracheary element formation in isolated single mesophyll cells of Zinnia elegans. Plant Physiol 103: 805–813 (1993).

    Google Scholar 

  221. Paris N, Stanley CM, Jones RL, Rogers JC: Plant cells contain two functionally vacuolar compartments. Cell 85: 563–572 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vierstra, R.D. Proteolysis in plants: mechanisms and functions. Plant Mol Biol 32, 275–302 (1996). https://doi.org/10.1007/BF00039386

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039386

Key words

Navigation