Skip to main content
Log in

An evaluation of the relative robustness of techniques for ecological ordination

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Simulated vegetation data were used to assess the relative robustness of ordination techniques to variations in the model of community variation in relation to environment. The methods compared were local nonmetric multidimensional scaling (LNMDS), detrended correspondence analysis (DCA), Gaussian ordination (GO), principal components analysis (PCA) and principal co-ordinates analysis (PCoA). Both LNMDS and PCoA were applied to a matrix of Bray-Curtis coefficients. The results clearly demonstrated the ineffectiveness of the linear techniques (PCA, PCoA), due to curvilinear distortion. Gaussian ordination proved very sensitive to noise and was not robust to marked departures from a symmetric, unimodal response model. The currently popular method of DCA displayed a lack of robustness to variations in the response model and the sampling pattern. Furthermore, DCA ordinations of two-dimensional models often exhibited marked distortions, even when response surfaces were unimodal and symmetric. LNMDS is recommended as a robust technique for indirect gradient analysis, which deserves more widespread use by community ecologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Austin M. P., 1976. Performance of four ordination techniques assuming different non-linear species response models. Vegetatio 33: 43–49.

    Google Scholar 

  • Austin M. P., 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11–21.

    Google Scholar 

  • Austin M. P., 1985. Continuum concept, ordination methods and niche theory. Ann. Rev. Ecol. Syst. 16: 39–61.

    Google Scholar 

  • Austin M. P., 1987. Models for the analysis of species' response to environmental gradients. Vegetatio 69: 35–45.

    Google Scholar 

  • Austin M. P., Cunningham R. B. & Fleming P. M., 1984. New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55: 11–27.

    Google Scholar 

  • Austin M. P. & Noy-Meir I., 1971. The problem of nonlinearity in ordination: experiments with two-gradient models. J. Ecol. 59: 763–773.

    Google Scholar 

  • Beatty S. W., 1984. Influence of microtopography and canopy species on spatial patterns of forest understorey plants. Ecology 65: 1406–1419.

    Google Scholar 

  • Bradfield G. E. & Scagel A., 1984. Correlations among vegetation strata and environmental variables in subalpine sprucefir forests — southeast British Columbia. Vegetatio 55: 105–114.

    Google Scholar 

  • Brown M. J., Ratkowsky D. A. & Minchin P. R., 1984. A comparison of detrended correspondence analysis and principal co-ordinates analysis using four sets of Tasmanian vegetation data. Aust. J. Ecol. 9: 273–279.

    Google Scholar 

  • Chardy P., Glemarec M. & Laurec A., 1976. Application of inertia methods to benthic marine ecology: practical implications of the basic options. Estuar. Coast. Mar. Sci. 4: 179–205.

    Google Scholar 

  • Clymo R. S., 1980. Preliminary survey of the peat-bog Hummell Knowe Moss using various numerical methods. Vegetatio 42: 129–148.

    Google Scholar 

  • Dargie T. C. D., 1984. On the integrated interpretation of indirect site ordinations: a case study using semi-arid vegetation in southeastern Spain. Vegetatio 55: 37–55.

    Google Scholar 

  • DelMoral R., 1980. On selecting indirect ordination methods. Vegetatio 42: 75–84.

    Google Scholar 

  • Faith D. P., Minchin P. R. & Belbin L., 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.

    Google Scholar 

  • Fasham M. J. R., 1977. A comparison of nonmetric multidimensional scaling, principal components analysis and reciprocal averaging for the ordination of simulated coenoclines and coenoplanes. Ecology 58: 551–561.

    Google Scholar 

  • Feoli E. & Feoli Chiapella L., 1980. Evaluation of ordination methods through simulated coenoclines: some comments. Vegetatio 42: 35–41.

    Google Scholar 

  • Fewster P. H. & Orlóci L., 1983. On choosing a resemblance measure for non-linear predictive ordination. Vegetatio 54: 27–35.

    Google Scholar 

  • Field J. G., Clarke K. R. & Warwick R. M., 1982. A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser. 8: 37–52.

    Google Scholar 

  • Gauch H. G., 1973. The relationship between sample similarity and ecological distance. Ecology 54: 618–622.

    Google Scholar 

  • Gauch H. G., 1979. Catalog of the Cornell ecology programs series. 11th ed. Ecology and Systematics, Cornell University, Ithaca, New York.

    Google Scholar 

  • Gauch H. G., 1982. Multivariate analysis in community ecology. Cambridge University Press, London and New York.

    Google Scholar 

  • Gauch H. G., Chase G. B. & Whittaker R. H., 1974. Ordination of vegetation samples by Gaussian species distributions. Ecology 55: 1382–1390.

    Google Scholar 

  • Gauch H. G. & Whittaker R. H., 1972a. Coenocline simulation. Ecology 53: 446–451.

    Google Scholar 

  • Gauch H. G. & Whittaker R. H., 1972b. Comparison of ordination techniques. Ecology 53: 868–875.

    Google Scholar 

  • Gauch H. G. & Whittaker R. H., 1976. Simulation of community patterns. Vegetatio 33: 13–16.

    Google Scholar 

  • Gauch H. G., Whittaker R. H. & Singer S. B., 1981. A comparative study of nonmetric ordinations. J. Ecol. 69: 135–152.

    Google Scholar 

  • Gibson N. & Kirkpatrick J. B., 1985. Vegetation and flora associated with localised snow accumulation at Mount Field West, Tasmania. Aust. J. Ecol. 10: 91–99.

    Google Scholar 

  • Goodall D. W. & Johnson R. W., 1982. Non-linear ordination in several dimensions. A maximum likelihood approach. Vegetatio 48: 197–208.

    Google Scholar 

  • Gower J. C., 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Google Scholar 

  • Greig-Smith P., 1980. The development of numerical classification and ordination. Vegetatio 42: 1–9.

    Google Scholar 

  • Greig-Smith P., 1983. Quantitative plant ecology. 3rd ed. Blackwell, Oxford.

    Google Scholar 

  • Hill M. O., 1979. DECORANA — A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging. Ecology and Systematics, Cornell University, Ithaca, New York.

    Google Scholar 

  • Hill M. O. & Gauch H. G., 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • Hotelling H., 1933. Analysis of a complex of statistical variables into principal components. J. Ed. Psych. 24: 417–441 & 498–520.

    Google Scholar 

  • Ihm P. & VanGroenewoud H., 1975. A multivariate ordering of vegetation data based on Gaussian type gradient response curves. J. Ecol. 63: 767–777.

    Google Scholar 

  • Johnson R. W. & Goodall D. W., 1979. Maximum likelihood approach to non-linear ordination. Vegetatio 41: 133–142.

    Google Scholar 

  • Kruskal J. B., 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.

    Google Scholar 

  • Kruskal J. B., 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–129.

    Google Scholar 

  • Loucks O. L., 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32: 137–166.

    Google Scholar 

  • Minchin, P. R., 1983. A comparative evaluation of techniques for ecological ordination using simulated vegetation data and an integrated ordination-classification analysis of the alpine and subalpine plant communities of the Mt Field Plateau, Tasmania. Ph.D. thesis, University of Tasmania.

  • Minchin, P. R., 1987. Simulation of multidimensional community patterns: towards a comprehensive model. Vegetatio (in press).

  • Mohler C. L., 1981. Effects of sample distribution along gradients on eigenvector ordination. Vegetatio 45: 141–145.

    Google Scholar 

  • Noy-Meir I. & Austin M. P., 1970. Principal-component ordination and simulated vegetational data. Ecology 51: 551–552.

    Google Scholar 

  • Oksanen J., 1983. Ordination of boreal heath-like vegetation with principal component analysis, correspondence analysis and multidimensional scaling. Vegetatio 52: 181–189.

    Google Scholar 

  • Orlóci L., 1974. On information flow in ordination. Vegetatio 29: 11–16.

    Google Scholar 

  • Orlóci L., 1978. Multivariate analysis in vegetation research. 2nd ed. Junk, The Hague.

    Google Scholar 

  • Orlóci L., 1980. An algorithm for predictive ordination. Vegetatio 42 23–25.

    Google Scholar 

  • Orlóci L., Kenkel N. C. & Fewster P. H., 1984. Probing simulated vegetation data for complex trends by linear and nonlinear ordination methods. Abstr. Bot. 8: 163–172.

    Google Scholar 

  • Prentice I. C., 1977. Non-metric ordination methods in ecology. J. Ecol. 65: 85–94.

    Google Scholar 

  • Prentice I. C., 1980. Vegetation analysis and order invariant gradient models. Vegetatio 42: 27–34.

    Google Scholar 

  • Robertson P. A., MacKenzie M. D. & Elliot L. F., 1984. Gradient analysis and classification of the woody vegetation for four sites in southern Illinois and adjacent Missouri. Vegetatio 58: 87–104.

    Google Scholar 

  • Rotenberry J. T. & Wiens J. A., 1980. Habitat structure, patchiness and avian communities in North American steppe vegetation: a multivariate analysis. Ecology 61: 1228–1250.

    Google Scholar 

  • Schönemann P. H. & Carroll R. M., 1970. Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 245–255.

    Google Scholar 

  • Sibson R., 1972. Order invariant methods for data analysis. J. Roy. Statist. Soc. B. 34: 311–349.

    Google Scholar 

  • Swan J. M. A., 1970. An examination of some ordination problems by use of simulated vegetational data. Ecology 51: 89–102.

    Google Scholar 

  • Van derMaarel E., 1980. On the interpretability of ordination diagrams. Vegetatio 42: 43–45.

    Google Scholar 

  • Van derMaarel E., Boot R., VanDorp D. & Rijntjes J., 1985. Vegetation succession on the dunes near Oostvoorne, The Netherlands; a comparison of the vegetation in 1959 and 1980. Vegetatio 58: 137–187.

    Google Scholar 

  • Walker J. & Peet R. K., 1983. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina. Vegetatio 55: 163–179.

    Google Scholar 

  • Whittaker R. H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.

    Google Scholar 

  • Whittaker R. H., 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Google Scholar 

  • Whittaker R. H. & Gauch H. G., 1978. Evaluation of ordination techniques. In: R. H.Whittaker (ed.), Ordination of plant communities, pp. 227–336. Junk, The Hague.

    Google Scholar 

  • Young, F. W. & Lewyckyj, R., 1979. ALSCAL-4 User's Guide. Data Analysis and Theory Associates, P.O. Box 446, Carrboro, North Carolina.

Download references

Author information

Authors and Affiliations

Authors

Additional information

I acknowledge the encouragement of Dr M. P. Austin and Dr B. M. Potts and the co-operation of the staff of the University of Tasmania computing centre. I also thank Prof. R. S. Clymo, Dr I. C. Prentice and Prof. L. Orlóci for helpful comments on the manuscript. This work formed part of a Ph.D. project at the Botany Department, University of Tasmania, during which I held an Australian Commonwealth Postgraduate Research Award.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minchin, P.R. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69, 89–107 (1987). https://doi.org/10.1007/BF00038690

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00038690

Keywords

Navigation