Skip to main content
Log in

Tree species composition and rain forest-environment relationships in the middle Caquetá area, Colombia, NW Amazonia

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

As part of an integrated forest vegetation and soil survey, tree species composition (DBH ≥10 cm) was recorded in 95 plots of 0.1 ha, distributed over the principal physiographic units in the middle Caquetá area, Colombian Amazonia. A total of 1077 tree species was found, classified into 271 genera and 60 families. Leguminosae and Sapotaceae show high familial importance values in all physiographic units. Lauraceae, Chrysobalanaceae, Moraceae, and Lecythidaceae are more important on well drained (flood plain or upland) soils, while Palmae, Guttiferae, Bombacaceae, and Apocynaceae are more important in swamps and on podzolised (‘white sand'rs) soils. Plots on well drained soils show a lower degree of dominance than plots in swamps or on podzolised (‘white sand’) soils. The composition of the most dominant species in the plots changes continuously. Most species (59%) are only recorded in one plot. Individual plot pairs generally show a low overlap of about 2–5 tree species, resulting in Jaccard coefficients below 20%.

complementary to a previous forest classification based on TWINSPAN analyses, detrended and canonical correspondence analyses were carried out, using CANOCO 3.1. Despite of a low amount of tree species variance explained (only 6.2% by the first two canonical axes), meaningful patterns of tree species composition were recognised. These are most strongly related to drainage, flooding, humus forms, and soil nutrient status. Forest types are well separated in the CCA ordination diagram. The most frequently found tree species are listed according to their preference with respect to drainage, flooding, and soil nutrient status.

Tree species composition in the well drained upland forests was analysed separately. In view of the model explaining high NW Amazonian tree species diversity on the basis of dense community packing and high beta diversity along soil gradients, the canonical analysis here focused on the effect of soils. By means of partial canonical ordination it was found that patterns of tree species composition depended significantly on soil properties, even though the edaphic component explains only a small fraction of the tree species variance. The results show that the well drained uplands of the middle Caquetá area are covered by a complex of two intergrading tree species assemblages. The first assemblage (community of Goupia glabra-Clathrotropis macrocarpa) is associated to some-what less poor, clayey soils developed in Andean origin deposits or Tertiary sediments from the Pebas formation. The second assemblage (community of Swartzia schomburgkii-Clathrotropis macrocarpa) shows affinities to very poor, loamy soils developed in parent materials derived from the Guiana shield. This simple dichotomous pattern of geology, soils, and forest types is incompatible with concepts of high soil heterogeneity and associated beta diversity controlling tree species diversity in well drained uplands of NW Amazonia. The gradient length of tree species in the detrended correspondence analysis was low (3.7 SD), also suggesting a low beta diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, A. B. 1981. White-sand vegetation of Brazilian Amazonia. Biotropica 13: 199–210.

    Google Scholar 

  • Ashton, P. S. & Hall, P. 1992. Comparisons of structure among mixed dipterocarp forests of north-western Borneo. Journal of Ecology 80: 459–481.

    Google Scholar 

  • Ashton, P. S. 1963. Some problems arising in the sampling of mixed rain forest communities for floristic studies. Symposium on ecological research in humid tropic vegetation. Kuching, Sarawak, July 1963, pp. 235–240.

  • Ashton, P. S. 1992. Species richness in plant communities. In: Fiedler, P. L. & Jain, S. K. (eds), Conservation biology. Chapman and Hall, New York/London, pp. 3–22.

    Google Scholar 

  • Austin, M. P., Ashton, P. S. & Greig-Smith, P. 1972. The application of quantitative methods to vegetation survey III. A re-examination of rain forest data from Brunei. Journal of Ecology 60: 305–324.

    Google Scholar 

  • Bauillie, I. C., Ashton, P. S., Court, M. N., Anderson, J. A. R., Fitzpatrick, E. A. & Tinsley, J. 1987. Site characteristics and the distribution of tree species in Mixed Dipterocarp Forest on Tertiary sediments in central Sarawak, Malaysia. Journal of Tropical Ecology 3: 201–220.

    Google Scholar 

  • Bongers, F. & Popma, J. 1988. Trees and gaps in a Mexican tropical rain forest. Ph.D. thesis (combined autorship), University of Utrecht, Utrecht.

  • Borcard, D., Legendre, P. & Drapeau, P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Google Scholar 

  • Crow, T. R. & Grigal, D. F. 1979. A numerical analysis of arborescent communities in the rain forest of the Luquillo Mountains, Puerto Rico. Vegetatio 40: 135–146.

    Google Scholar 

  • Dietvorst, P., van der, Maarel, E. & van der, Putten, H. 1982. A new approach to the minimal area of a plant community. Vegetatio 50: 77–91.

    Google Scholar 

  • Duivenvoorden, J. F. 1994a. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodiversity and Conservation 3: 685–715.

    Google Scholar 

  • Duivenvoorden, J. F. 1994b. Plant diversity, vegetation, and environment in the middle Caquetá basin of Colombian Amazonia. Ph.D. thesis, University of Amsterdam, Amsterdam.

  • Duivenvoorden, J. F. & Lips, J. M. 1993. Ecología del paisaje del Medio Caquetá. Memoria explicativa de los mapas. Tropenbos-Colombia, SantaFé de Bogotá.

  • Encarnación, F. 1985. Introducción a la flora y vegetación de la Amazonia peruana: estado actual de los estudios, medio natural y ensayo de una clave de determinación de las formaciones vegetales en la llanura amazónica. Candollea 40: 237–252.

    Google Scholar 

  • FAO 1977. Guidelines for soil profile description. FAO, Rome. 66 pp.

    Google Scholar 

  • FAO 1988. FAP/Unesco soil map of the world, revised legend. World Soil Resources Report 60, FAO, Rome. 138 pp.

    Google Scholar 

  • Gartlan, J. S., Newberry, D. M., Thomas, D. W. & Waterman, P. G. 1986. The influence of topography and soil phosphorus on the vegetation of Korup Forest Reserve, Cameroun. Vegetatio 65: 131–148.

    Google Scholar 

  • Gauch, H. G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gentry, A. H. 1981. Distributional patterns and an additional species of the Passiflora vitifolia complex: Amazonian species diversity due to edaphically differentiated communities. Plant Systematics and Evolution 137: 95–105.

    Google Scholar 

  • Gentry, A. H. 1988a. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 1–34.

    Google Scholar 

  • Gentry, A. H. 1988b. Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Science USA 85: 156–159.

    Google Scholar 

  • Gentry, A. H. & Ortíz, R. 1993. Patrones de composición florística en la Amazonia peruana. In: Kalliola, R., Puhakka, M. & Danjoy, W. (eds), Amazonia peruana, vegetación húmeda tropical en el llano subandino. Proyecto Amazonia, Universidad de Turku (PAUT), Turku, and Oficina Nacional de Evalución de Recursos Naturales (ONERN), Lima, pp. 155–166.

    Google Scholar 

  • Greig-Smith, P. 1971. Application of numerical methods to tropical forest. In: Patil, G. P., Pielou, E. C. & Waters, W. E. (eds), Statistical Ecology, volume 3: Populations, Ecosystems and Systems Analysis. Pennsylvania State University Press, pp. 195–206.

  • Hall, J. B. & Swaine, M. D. 1976. Classification and ecology of closed-canopy forest in Ghana. Journal of Ecology 64: 913–951.

    Google Scholar 

  • Hill, M. O. 1979a. DECORANA — a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca, New York.

    Google Scholar 

  • Hill, M. O. 1979b. TWINSPAN — a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, New York.

    Google Scholar 

  • Ho, C. C., Newberry, D. McC. & Poore, M. E. D. 1987. Forest composition and inferred dynamics in Jengka Forest Reserve, Malaysia. Journal of Tropical Ecology 3: 25–56.

    Google Scholar 

  • Holdridge, L. R., Grenke, W. C., Hathway, W. H., Liang, T. & Tosi, J. A. 1971. Forest environments in tropical life zones, a pilot study. Pergamon, Oxford.

    Google Scholar 

  • Hoorn, C. 1991. Nota geológica; La formación Pevas (‘Terciario Inferior Amazónico’): Depósitos Fluvio-lacustres del Mioceno Medio a Superior. Colombia Amazónica 5: 119–130.

    Google Scholar 

  • Hubbell, S. P. & Foster, R. B. 1983. Diversity of canopy trees in a neotropical forest and implications for conservation. In: Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds), Tropical rain forest: ecology and management. Blackwell, Oxford, pp. 24–41.

    Google Scholar 

  • Jans, L., Poorter, L., Van, Rompaey, R. S. A. R. & Bongers, F. 1993. Gaps and forest zones in tropical moist forest in Ivory Coast. Biotropica 25: 258–269.

    Google Scholar 

  • Johnston, M. H. 1992. Soil-vegetation relationships in a tabonuco forest community in the Luquillo Mountains of Puerto Rico. Journal of Tropical Ecology 8: 253–263.

    Google Scholar 

  • Junk, W. J. 1982. Ecology of swamps on the middle Amazon. In: Goodall, D. W. (ed.), Ecosystems of the World. Elsevier, Amsterdam, pp. 269–294.

    Google Scholar 

  • Junk, W. J. 1989. Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen, L. B., Nielsen, I. C. & Balslev, H. (eds). Tropical forests. Academic Press, London, pp. 47–64.

    Google Scholar 

  • Kahn, F. 1987. The distribution of palms as a function of local topography in Amazonian terra-firme forests. Experientia 43: 251–259.

    Google Scholar 

  • Kahn, F. & Castro, A. 1985. The palm community in a forest of central Amazonia. Biotropica 17: 210–216.

    Google Scholar 

  • Kahn, F. & Granville, J-J.de 1992. Palms in forest ecosystems of Amazonia. Springer-Verlag, Berlin.

    Google Scholar 

  • Kapos, V., Pallant, E., Bien, A. & Freskos, S. 1990. Gap frequencies in lowland rain forest sites on contrasting soils in Amazonian Ecuador. Biotropica 22: 218–225.

    Google Scholar 

  • Kent, M. & Ballard, J. 1988. Trends and problems in the application of classification and ordination methods in plant ecology. Vegetatio 78: 109–124.

    Google Scholar 

  • Kimmins, J. P. 1987. Forest ecology. Macmillan Publishing Company, New York.

    Google Scholar 

  • Knight, D. H. 1975. A phytosociological analysis of species-rich tropical forest on Barro Colorado Island, Panama. Ecological Monographs 45: 259–284.

    Google Scholar 

  • Köppen, W. 1936. Das geographische System der Klimate, In: Köppen, W. & Geiger, R. (eds), Handbuch der Klimatologie. Berlin.

  • Kubitzki, K. 1989. The ecogeographical differentiation of Amazonian inundation forests. Plant Systematics and Evolution 162: 285–304.

    Google Scholar 

  • Kubitzki, K. & Ziburski, A. 1994. Seed dispersal in flood plain forests of Amazonia. Biotropica 26: 30–43.

    Google Scholar 

  • Lawson, G. W., Armstrong-Mensah, K. O. & Hall, J. B. 1970. A catena in tropical moist semi-deciduous forest near Kade, Ghana. Journal of Ecology 58: 371–398.

    Google Scholar 

  • Legendre, P. & Fortin, M. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.

    Google Scholar 

  • Lescure, J-P. & Boulet, R. 1985. Relationships between soil and vegetation in a tropical rain forest in French Guiana. Biotropica 17: 155–164.

    Google Scholar 

  • Lieberman, M., Lieberman, D., Hartshorn, G. S. & Peralta, R. 1985. Small-scale altitudinal variation in lowland wet tropical forest vegetation. Journal of Ecology 73: 505–516.

    Google Scholar 

  • Lips, J. M. & Duivenvoorden, J. F. 1991. Características morfológicas y químicas de salados en la cuenca Medio Caquetá, Amazonas, Colombia. Colombia Amazónica 5: 119–130.

    Google Scholar 

  • Mori, S. A., Boom, B. M., Carvalho, A. M.de & Santos, T. S.de 1983. Southern Bahian moist forests. Botanical Review 49: 155–232.

    Google Scholar 

  • Mori, S. A. & Becker, P. 1991. Flooding affects survival of Lecythidaceae in terra firme forest near Manaus, Brazil. Biotropica 23: 87–90.

    Google Scholar 

  • Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and Methods of Vegetation Ecology, Wiley & Sons, New York.

    Google Scholar 

  • Newberry, D. McC. 1991. Floristic variation within kerangas (heath) forest: re-evaluation of data from Sarawak and Brunei. Vegetatio 96: 43–86.

    Google Scholar 

  • Newberry, D. McC. & Proctor, J. 1984. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. IV. Associations between tree distribution and soil factors. Journal of Ecology 72: 475–493.

    Google Scholar 

  • Oldeman, R. A. A. 1983. Tropical rain forest, architecture, silvigenesis and diversity. In: Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds), Tropical rain forests: ecology and management. Blackwell, Oxford, pp. 139–150.

    Google Scholar 

  • Oldeman, R. A. A. 1989. Dynamics in tropical rain forests. In: Holm-Nielsen, L. B., Nielsen, I. C. & Balslev, H. (eds), Tropical forests. Academic Press, London, pp. 3–21.

    Google Scholar 

  • Oldeman, R. A. A. 1990. Forests: elements of silvology. Springer-Verlag, Berlin.

    Google Scholar 

  • Pires, J. M. & Prance, G. T. 1985. The vegetation types of the Brazilian Amazon. In: Prance, G. T. & Lovejoy, T. E. (eds), Key environments: Amazonia, Pergamon, Oxford, pp. 109–145.

    Google Scholar 

  • Poulsen, A. D. & Balslev, H. 1991. Abundance and cover of ground herbs in an Amazonian rain forest. Journal of vegetation Science 2: 315–322.

    Google Scholar 

  • Prance, G. T. 1979. Notes on the vegetation of Amazonia III: the terminology of Amazonian forest types subject to inundation. Brittonia 31: 26–38.

    Google Scholar 

  • Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W. 1983. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. Journal of Ecology 71: 237–260.

    Google Scholar 

  • Proradam. 1979. La Amazonia Colombiana y sus recursos. Proyecto radargramétrico del Amazonas. República de Colombia, Bogotá.

  • Rompaey, R. S. A. R. van 1993. Forest gradients in West-Africa: a spatial gradient analysis. Doctoral thesis, Agricultural University, Wageningen.

  • Rouw, A. de 1991. Rice, weeds and shifting cultivation in a tropical rain forest. Doctoral thesis, Agricultural University, Wageningen.

  • Rouw, A.de, Vellema, H. C. & Blokhuis, W. A. 1990. Land unit survey of the Taï region, south-west Côte d'Ivoire. The Tropenbos Foundation, Ede.

    Google Scholar 

  • Sánchez, P., Couto, W. & Buol, S. W. 1982. The Fertility Capability Soil Classification System: interpretation, applicability and modification. Geoderma 27: 283–309.

    Google Scholar 

  • SSS (Soil Survey Staff) 1990. Keys to soil taxonomy (fourth edition). SMSS technical monograph no. 19. Blacksburg, Virginia.

  • SYSTAT 1992. SYSTAT for the Macintosh, version 5.2. SYSTAT, Evanston.

    Google Scholar 

  • Ter, Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • Ter, Braak, C. J. F. 1987a. CANOCO-a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Wageningen.

    Google Scholar 

  • Ter, Braak, C. J. F. 1987b. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Google Scholar 

  • Ter, Braak, C. J. F. 1987c. Ordination. In: Jongman, R. G. H., Ter, Braak, C. J. F. & Van, Tongeren, O. F. R. (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen, pp. 91–173.

    Google Scholar 

  • Ter, Braak, C. J. F. 1990. Update Notes: CANOCO version 3.1. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • Ter, Steege, H., Jetten, V. G., Polak, M. A. & Werger, M. J. A. 1993. Tropical rain forest types and soil factors in a watershed area in Guyana. Journal of Vegetation Science 4: 705–716.

    Google Scholar 

  • Tracey, J. G. 1969. Edaphic differentiation of some forest types in eastern Australia I. Soil physical factors. Journal of Ecology 57: 805–816.

    Google Scholar 

  • Tuomisto, H. & Ruokalainen, K. 1993. Distribution of Pteridophyta and Melastomataceae along an edaphic gradient in an Amazonian rain forest. Journal of Vegetation Science 4: 25–34.

    Google Scholar 

  • UNESCO 1973. Clasificación internacional y cartografía de la vegetación. Ecology and conservation, 6. Unesco, Paris.

    Google Scholar 

  • Van der, Hammen, T., Duivenvoorden, J. F., Lips, J. M., Urrego, L. E. & Espeio, N. 1992. Late Quaternary of the middle Caquetá River area (Colombian Amazonia). Journal of Quaternary Science 7: 45–55.

    Google Scholar 

  • Van der, Werff, H. 1992. Substrate preference of Lauraceae and ferns in the Iquitos area, Peru. Candollea 47: 11–20.

    Google Scholar 

  • Wartenberg, D., Ferson, S. & Rohlf, F. J. 1987. Putting things in order: a critique of detrended correspondence analysis. The American Naturalist 129: 434–448.

    Google Scholar 

  • Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Google Scholar 

  • Whitmore, T. C. 1984. Tropical rain forests of the Far East. Clarendon Press, Oxford.

    Google Scholar 

  • Whitmore, T. C. 1989. Tropical forest nutrients, where do we stand? A tour de horizon. In: Proctor, J. (ed.), Mineral nutrients in tropical forest and savanna ecosystems. Blackwell, Oxford, pp. 1–13.

    Google Scholar 

  • Whitmore, T. C. 1990. An introduction to tropical rain forests. Clarendon Press, Oxford.

    Google Scholar 

  • Wolf, J. H. D. 1993. Ecology of epiphytes and epiphyte communities in montane rain forests, Colombia. Doctoral thesis, University of Amsterdam, Amsterdam.

  • Worbes, M., Klinge, H., Revilla, J. D. & Christopher, M. 1992. On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. Journal of Vegetation Science 3: 553–564.

    Google Scholar 

  • Young, K. R. & Léon, B. 1989. Pteridophyte species diversity in the central Peruvian Amazon: importance of edaphic specialization. Brittonia 41: 388–395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duivenvoorden, J.E. Tree species composition and rain forest-environment relationships in the middle Caquetá area, Colombia, NW Amazonia. Vegetatio 120, 91–113 (1995). https://doi.org/10.1007/BF00034341

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034341

Key words

Navigation