Skip to main content
Log in

North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Spectral vegetation index measurements derived from remotely sensed observations show great promise as a means to improve knowledge of land vegetation patterns. The daily, global observations acquired by the Advanced Very High Resolution Radiometer, a sensor on the current series of U.S. National Oceanic and Atmospheric Administration meteorological satellites, may be particularly well suited for global studies of vegetation. Preliminary results from analysis of North American observations, extending from April to November 1982, show that the vegetation index patterns observed correspond to the known seasonality of North American natural and cultivated vegetation. Integration of the observations over the growing season produced measurements that are related to net primary productivity patterns of the major North American natural vegetation formations. Regions of intense cultivation were observed as anomalous areas in the integrated growing season measurements. These anomalies can be explained by contrasts between cultivation practices and natural vegetation phenology. Major new information on seasonality, annual extent and interannual variability of vegetation photosynthetic activity at continental and global scales can be derived from these satellite observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajtay G. L., Ketner P. & Duigneand P., 1979. Terrestrial primary production and phytomass, In: B. Bolin, E. T. Degans, S. Kempe & P. Ketner (eds.), The global carbon cycle, pp. 129–181, SCOPE Report 13, John Wiley, New York.

    Google Scholar 

  • Asrar G., Fuchs M., Kanemasu E. T. & Hatfield J. L., 1984. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agro. J. 76: 300–306.

    Google Scholar 

  • Bauer M. E., Daughtry C. S. T. & Vanderbilt V. C., 1981. Spectral-agronomic relations of corn, soybeans, and wheat canopies. Tech. Report 091281. LARS-Purdue University, West Lafayette, Indiana.

    Google Scholar 

  • Blair B. O. & Baumgardner M. F., 1977. Detection of green and brown wave in hardwood canopy covers using multi-date, multispectral data from Landsat-I. Agro. J. 69: 808–811.

    Google Scholar 

  • Box E. O., 1981. Macroclimate and plant forms: An introduction to predictive modeling in phytogeography. Tasks in Vegetation Science, 1 (H. Lieth, series editor), Dr. W. Junk, The Hague.

    Google Scholar 

  • Bunnik N. J. J., 1978. The multispectral reflectance of short-wave radiation by agricultural crops in relation with their morphological and optical properties. H. Veenman & Zonen, Wageningen, The Netherlands, 172 pp.

    Google Scholar 

  • Colwell J. E., 1974. Vegetation canopy reflectance. Remote Sensing Environ. 3: 175–183.

    Google Scholar 

  • Colwell R. N., 1956. Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hildgardia 26 (5): 223–286.

    Google Scholar 

  • Committee for World Atlas of Agriculture, 1968. World atlas of agriculture, Instituto Geografico de Agostini, Novara, Italy.

    Google Scholar 

  • Curran P. J., 1983. Multispectral remote sensing for the estimation of green leaf area index. Phi T Roy A 309: 257–270.

    Google Scholar 

  • Daughtry C. S. T., Gallo K. D. & Bauer M. E., 1982. Spectral estimates of solar radiation intercepted by corn canopies. Agristars Tech. Report SR-PZ-04236, Purdue University, West Lafayette, IN.

    Google Scholar 

  • Deering, D. W., Rouse, Jr. J. W., Haas, R. H. & Schell, J. S., 1975. Measuring forage production of grazing units from Landsat MSS data. In: 10th International Symposium on Remote Sensing of Environment, ERIM, Ann Arbor, Michigan, pp. 1169–1178.

  • Dethier B. E., 1974. Phenology satellite experiment. Final report, contract NAS5–21781, Cornell University, Ithaca, NY.

    Google Scholar 

  • Fung I., Prentice K., Matthews E., Learner J. & Russell G., 1983. Three-dimensional tracer model study of atmospheric CO2: Response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res. 88: 1281–1294.

    Google Scholar 

  • Gates D. M., Keegan H. J., Schleter J. C. & Weidner V. R., 1965. Spectral properties of plants. AP Optics 4: 11–20.

    Google Scholar 

  • Gatlin, J. A., Tucker, C. J. & Schneider, S. R., 1981. Use of NOAA-6 channels one and two for monitoring vegetation, In: IEEE Proc. Int. Geoscience and Remote Sensing Symp., Washington, DC, June 8–11.

  • Gray T. L. & McCrary D. G., 1981. The environmental index, a tool potentially useful for arid land management. Agristars Rep. No. EW-N1–04076, NASA Johnson Space Center, Houston, Texas.

    Google Scholar 

  • Greegor D. H. & Norwine J., 1981. A gradient model of vegetation and climate utilizing NOAA satellite imagery, Phase I: Texas Transect. Agristars report no. FC-J1–04176, NASA Johnson Space Center, Houston, Texas.

    Google Scholar 

  • Hansen J., Johnson D., Lacis A., Lebedeff S., Lee P., Rind D. & Russell G., 1981. Climate impact of increasing atmospheric carbon dioxide. SCI 213: 957–966.

    Google Scholar 

  • Hatfield J. L., 1983. Remote sensing estimates of potential and actual crop yield. Remote Sensing Environ. 13: 301–311.

    Google Scholar 

  • Hesketh J. D. & Jones J. W. (eds.), 1980. Predicting photosynthesis for ecosystem models. CRC Press, Baca Raton, Florida, 2 vols., 605 pp.

    Google Scholar 

  • Holben B. N. & Fraser R. S., 1984. Red and near-infrared sensor response to off-nadir viewing. Int. J. Remote Sensing 5: 145–160.

    Google Scholar 

  • Holben B. N., Tucker C. J. & Fan C. J., 1980. Assessing soybean leaf area and leaf biomass with spectral data. Photogr. E. R. 46: 651–656.

    Google Scholar 

  • Holdridge L. R., 1947. Determination of world plant formations from simple climatic data. SCI 105: 367–368.

    Google Scholar 

  • Idso S. B. & deWit C. T., 1970. Light relations in plant canopies. Appl. Opt. 9: 177–184.

    Google Scholar 

  • Jackson R. D., 1983. Spectral indices in n-space. Remote Sensing Environ. 13: 409–421.

    Google Scholar 

  • Junge C. E. & Czeplak G., 1968. Some aspects of seasonal variation of carbon dioxide and ozone. Tellus 20: 422–434.

    Google Scholar 

  • Justice, C. O., 1983. Contribution of remote sensing to the inventory and monitoring of natural resources. In: Proceedings, Renewable Resource Inventories for Monitoring Changes and Trends, Corvallis, Oregon, August 15–19: 362–366.

  • Justice, C. O., Townshend, J. R. G., Holben, B. N. & Tucker, C. J., 1985. Phenology of global vegetation using meteorological satellite data. Intern. J. Remote Sensing (in press).

  • Kauth, R. J. & Thomas, G. S., 1976. The tasseled cap — a graphic description of the spectral-temporal development of agricultural crops as seen by landsat. Proceedings Symp. Machine Processing of Remotely Sensed Data. West Lafayette, Indiana.

  • Kidwell K. A., 1979. NOAA polar orbiter users guide. Dept. of Commerce, Washington, D.C.

    Google Scholar 

  • Knipling E. B., 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation by vegetation. Remote Sensing Environ 1: 115–119.

    Google Scholar 

  • Krinov E. L., 1947. Spectral reflectance of natural formations. Akad. Nauk, USSR, Laboratorica Aerometodov, Moscow (Transl. by NEC of Canada, T1439, G. Belkov).

    Google Scholar 

  • Küchler, A. W., 1964. Potential natural vegetation of the Conterminous United States. Amer. Geographical Soc. Spec. Pub. 36, New York.

  • Kumar M. & Monteith J. L., 1981. Remote sensing of crop growth, In: H. Smith (ed.), Plants and the daylight spectrum, pp. 134–144, Academic Press, London.

    Google Scholar 

  • Lemeur R. & Blad B. L., 1974. A critical review of light models for estimating the shortwave radiation regime of plant canopies. Agri. Meteorol. 14: 255–286.

    Google Scholar 

  • Lieth H., (ed.), 1974. Phenology and seasonality modeling, ecological studies 8. Springer-Verlag, New York.

    Google Scholar 

  • Lieth H., (ed.), 1978. Pattern of primary productivity in the biosphere. Benchmark Papers in Ecology, Vol. 8. Dowden, Hutchinson & Ross, Stroudsberg, PA.

    Google Scholar 

  • Matthews E., 1983. Global vegetation and land use; new high-resolution data bases for climate studies. J. Climate and Appl. Meteor. 22: 474–487.

    Google Scholar 

  • Mather J. R. & G. A. Yoshioka, 1968. The role of climate in distribution of vegetation. Assn Am. Geog. Ann. 58 (1): 29–41.

    Google Scholar 

  • Monteith J. L., 1977. Climate and the efficiency of crop production in Britain. Phil. Trans R. Soc. Lond. B 291: 277–294.

    Google Scholar 

  • NASA/GSFC, 1982. Project plant for fundamental research in scene radiation and atmospheric effects characterization. NASA/Goddard Space Flight Center, Greenbelt, Maryland, 128 pp.

    Google Scholar 

  • NASA/HQ, 1983. Land-related global habitability science issues. NASA Headquarters, Washington, DC, 112 pp.

    Google Scholar 

  • NASA/JSC, 1979. The LACIE Symposium, Proceedings of technical sessions. Vols. I and II, NASA Johnson Space Center, Houston, Texas, 1125 pp.

    Google Scholar 

  • National Oceanic and Atmospheric Administration, 1982. Monthly climatic data for the world, sponsored by World Meteorological Organization. Vol. 35, National Oceanic and Atmospheric Administration, National Climatic Center, Asheville, North Carolina. 172 pp.

    Google Scholar 

  • Norwine J. & Greegor D. H., 1983. Vegetation classification based on AVHRR satellite imagery. Remote Sensing Environ. 13: 69–87.

    Google Scholar 

  • Odum E. P., 1971. Fundamentals of ecology. 3rd ed., W. B. Saunders, Philadelphia, 525 pp.

    Google Scholar 

  • Olson, J. & Watts, J. A., 1982. Major world ecosystem complexes (map scale 1:30 m), included in W. C. Clark, (ed.), Carbon dioxide review 1982, Oxford University Press.

  • Ormsby J. P., 1982. Classification of simulated and actual NOAA-6 AVHRR data for hydrologic land-surface feature definition, Geoscience and Remote sensing, GE 20: 262–267.

    Google Scholar 

  • PerryJr. C. R. & Lanternschlager L. F., 1984. Functional equivalence of spectral vegetation indices. Remote Sensing Environ. 14: 169–182.

    Google Scholar 

  • Richardson A. J. & Wiegand C. L., 1977. Distinguishing vegetation from soil background information. Photogr. E. R. 43: 1541–1552.

    Google Scholar 

  • Rodin L. E., Bazilevich N. I. & Razov N. N., 1975. Productivity of the world's main ecosystems. In: D. E. Reichle, J. F. Franklin & D. W. Goodall (eds.), Productivity of the world's main ecosystems. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Rouse J. W., Haas R. H., Deering D. W. & Schell J. A., 1974. Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation. Final Rep. RSC 1978–4, Remote Sensing Center, Texas A&M Univ., College Station.

    Google Scholar 

  • Schneider, S. & McGinnis, Jr., D., 1977. Spectral differences between VHRR and VISSR data and their impact of environmental studies. In: Proceedings Amer. Soc. Photogrammetry, 43 Meeting 27 February to 5 March 1977. Washington, DC.

  • Sharpe D. M., 1975. Methods for assessing the primary productivity of regions, In: H. Lieth & R. H. Whittaker (eds.), Primary productivity of the biosphere, pp. 147–166, Springer-Verlag, New York.

    Google Scholar 

  • Shelford V. E., 1963. The ecology of North America. University of Illinois Press, Chicago, 722 pp.

    Google Scholar 

  • Shay R., (ed.), 1969. Remote sensing with special reference to agriculture and forestry. National Academy of Sciences, Washington, DC, 527 pp.

    Google Scholar 

  • Shukla J. & Mintz Y., 1982. Influence of land-surface evapotranspiration on the earth's climate. SCI 215: 1498–1501.

    Google Scholar 

  • Steven M. D., Biscoe P. V. & Jaggard K. W., 1983. Estimation of sugar beet productivity from reflection in red and near infrared spectral bands. Intern. J. Remote Sensing 4: 325–334.

    Google Scholar 

  • Suits G. H., 1972. The calculation of the directional reflectance of a vegetative canopy. Remote Sensing Environ. 2: 117–125.

    Google Scholar 

  • Tarpley J. D., Schneider S. R. & Morey R. L., 1983. Global vegetation indices from NOAA-7 meteorological satellite. J. Climate and Ap. Meteor. 23: 491–493.

    Google Scholar 

  • Thomas W. L.Jr., (ed.), 1959. Man's role in changing the face of the earth. The University of Chicago Press, Chicago, 817 pp.

    Google Scholar 

  • Thompson D. R. & Wehmanen O. A., 1979. Using Landsat digital data to detect moisture stress, Photogr. E. R. 45: 201–207.

    Google Scholar 

  • Townshend J. R. G. & Tucker C. J., 1981. Utility of AVHRR of NOAA-6 and-7 for vegetation mapping. In: Matching remote sensing technologies and applications proceedings, pp. 97–107, Remote Sensing Soc., London.

    Google Scholar 

  • Tucker C. J., 1978. A comparison of satellite sensors for monitoring vegetation. Photogr. E. R. 44: 1369–1380.

    Google Scholar 

  • Tucker C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing Environ. 8: 127–150.

    Google Scholar 

  • Tucker C. J., Holben B. N., ElginJr. J. H. & McMurtrey J. E., 1981. Remote sensing of total dry-matter accumulation in winter wheat. Remote sensing Environ. 11: 171–189.

    Google Scholar 

  • Tucker, C. J., Gatlin, J. A., Schneider, S. R. & Kuchinos, M. A., 1982. Measuring vegetation in the Nile delta with NOAA-6 and NOAA-7 AVHRR data, In: Proceedings Intern. Symp. Remote Sensing of Arid and Semiarid Lands, Environmental Research Instituto of Michigan, Cairo.

  • Tucker C. J., Vanpraet C., Boerwinkle E. & Gaston A., 1984. Satellite remote sensing of total dry matter accumulation in the Senegalese Sahel. Remote Sensing Environ. 13: 461–474.

    Google Scholar 

  • Tucker C. J., Hielkema J. U. & Roffey J., 1985a. Satellite remote sensing of ecological conditions for desert locust survey and forecasting. Intern. J. Remote Sensing 6: 122–138.

    Google Scholar 

  • Tucker C. J., Townshend J. R. G. & Goff T. E., 1985b. Continental land cover classification using NOAA-7 AVHRR data. SCI 227: 369–375.

    Google Scholar 

  • Tucker C. J., Vanpraet C., Sharman M. I. & Van Ittersum G., 1985c. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sensing Environ. 14: 233–249.

    Google Scholar 

  • Waring R. H. & Franklin J. F., 1979. Evergreen coniferous forests of the Pacific Northwest. SCI 204: 1380–1386.

    Google Scholar 

  • Weinman J. A. & Guetter P. J., 1972. Penetration of solar irradiance through the atmosphere and plant canopies. J. Appl. Meteorol. 11: 136–140.

    Google Scholar 

  • Whittaker R. H., 1970. Communities and ecosystems. Macmillan, London, 162 pp.

    Google Scholar 

  • Whittaker R. H. & Likens G. E., 1975. Primary production: The biosphere and man, In: H. Lieth & R. H. Whittaker (eds.), Primary productivity of the biosphere. Ecological Studies, 14, Springer Verlag, New York.

    Google Scholar 

  • Woodwell G. M., Whittaker T. H., Reiners W. A., Likens G. E., Delwiche C. C. & Botkin D. B., 1978. The biota and the world carbon budget. SCI 199: 141–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research is in part supported through NASA Cooperative Agreement NCC 5–26 from the NASA/Goddard Space Flight Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goward, S.N., Tucker, C.J. & Dye, D.G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64, 3–14 (1985). https://doi.org/10.1007/BF00033449

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033449

Keywords

Navigation