Skip to main content
Log in

The ecology of photosynthetic bacteria in Burton Lake, Vestfold Hills, Antarctica

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Photosynthetic bacteria in Burton Lake, a seasonally tidal, meromictic lake of maximum depth 18 m, located in the Vestfold Hills, Antarctica, were studied throughout 1983. The dominant species were Chlorobium vibrioforme and Chlorobium limicola (up to 5.4 × 106 cells ml−1) and minor species were Thiocapsa roseopersicina (< 1.25 × 105 cells ml−1) and Rhodopseudomonas palustris (< 100 cells ml−1). The Chlorobium spp. and T. roseopersicina were found throughout the anoxic water, which ranged in temperature from −0.5°C to −2.2°C, but did not form discrete layers at the O2−H2S interface. The growth zone, however, of the Chlorobium spp. was delineated by the presence of light and H2S and was restricted to less than 3 m below the O2−H2S interface. R. palustris was found in oxic and anoxic water. Available light, which varied from 0–4.9µE m−2 s−1 at the O2−H2S interface, was considered to be the major environmental factor controlling growth of the bacterial phototrophs. Growth was initiated in spring in low light levels (< 1 µE m−2 s−1) following 3 months of darkness during winter. It is concluded that the dominance of the Chlorobium spp. was a result of their more efficient maintenance metabolism in winter and of their greater efficiency in utilizing low intensity light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abella, C., E. Montesinos & R. Guerrero, 1980. Field studies on the competition between purple and green sulphur bacteria for available light (Lake Siso, Spain). In M. Dokulil, H. Metz & D. Jewson (eds), Developments in Hydrobiology, 3. Dr W. Junk Publishers, The Hague: 173–181.

    Google Scholar 

  • Bayly, I. A. E., 1986. Ecology of the zooplankton of a meromictic antarctic lagoon with special reference to Drepanopus bispinosus (Copepoda: Calanoida). Hydrobiologia 140: 199–231.

    Google Scholar 

  • Biebl, H. & N. Pfennig, 1978. Growth yields of green sulphur bacteria in mixed cultures with sulphur and sulphate reducing bacteria. Arch. Microbiol. 117: 9–16.

    Google Scholar 

  • Biebl, H. & N. Pfennig, 1981. Isolation of members of the Rhodospirillaceae. In M. P. Starr, H. Stolp, H. G. Truper, A. Ballows & H. G. Schlegel (eds), The Prokaryotes 1. Springer-Verlag, Berlin: 267–273.

    Google Scholar 

  • Burke, C. M. & H. R. Burton, this volume. Photosynthetic bacteria in meromictic lakes and stratified fjords of the Vestfold Hills, Antarctica. Hydrobiologia.

  • Burton, H. R. & J. M. Ferris, 1983. Calculations of in situ density values for salt lakes. In A. R. Chivas & P. De Deckker (coordinators), Salt Lakes, Evaporites and Aeolian Deposits (SLEADS) workshop 83, Salt Lakes in Arid Australia. Australian National University, Canberra: 9–10.

    Google Scholar 

  • Clark, A. E. & A. E. Walsby, 1978. The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake. Arch. Microbiol. 118: 229–233.

    Google Scholar 

  • Caldwell, D. E. & J. M. Tiedje, 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can. J. Microbiol. 21: 377–385.

    Google Scholar 

  • Croome, R. L. & P. A. Tyler, 1984. Microbial microstratification and crepuscular photosynthesis in meromictic Tasmanian lakes. Verh. int. Ver. Limnol. 22: 1695–1701.

    Google Scholar 

  • Fonselius, S. H., 1983. Determination of hydrogen sulphide. In K. Grasshoff, M. Erhardt & K. Kremling (eds), Methods of Seawater Analysis, second edition. Verlag Chemie, GmbH Weinheim: 73–80.

    Google Scholar 

  • Gorlenko, V. M. & E. M. Chebotarev, 1981. Microbiological processes in the meromictic Lake Sakovo. Microbiology 50: 98–102.

    Google Scholar 

  • Gorlenko, V. M., E. N. Chebotarev & V. I. Kachalkin, 1974. Microbial oxidation of hydrogen sulphide in Lake Veisovo (Slavyansk Lake). Microbiology 43: 450–453.

    Google Scholar 

  • Guerrero, R., E. Montesinos, I. Esteve & C. Abella, 1980. Physiological adaptation and growth of purple and green sulphur bacteria in a meromictic lake (Vila) as compared to a holomictic lake (Siso). In M. Dokulil, H. Metz & D. Jewson (eds), Developments in Hydrobiology, 3. Dr W. Junk, Publishers, The Hague: 161–171.

    Google Scholar 

  • Hand, R. M., 1980. Bacterial populations of two saline antarctic lakes. In P. A. Trudinger & M. R. Walter (eds), Biogeochemistry of Ancient and Modern Environments. Aust. Acad. Sci., Canberra: 123–129.

    Google Scholar 

  • Hand, R. M. & H. R. Burton, 1981. Microbial ecology of an antarctic saline meromictic lake. Hydrobiologia 82: 363–374.

    Google Scholar 

  • Herbert, R. A. & A. C. Tanner, 1977. The isolation and characteristics of photosynthetic bacteria (Chromatiaceae and Chlorobiaceae) from antarctic marine sediments. J. appl. Bact. 43: 437–445.

    Google Scholar 

  • Journal of Glaciology, 1958. Instruments and methods: Ice drills and corers. J. Glaciol. 3: 30.

    Google Scholar 

  • Kriss, A. E., I. N. Mitskevich, E. P. Rozanova & L. K. Osnitskaya, 1976. Microbial investigations of Lake Vanda (Antarctica). Microbiology 45: 917–922.

    Google Scholar 

  • Lawrence, J. R., R. C. Haynes & U. T. Hammer, 1978. Contribution of photosynthetic green sulphur bacteria to total primary production in a meromictic saline lake. Verh. int. Ver. Limnol. 20: 201–207.

    Google Scholar 

  • Lindholm, T., K. Weppling & H. S. Jensen, 1984. Stratification and primary production in a small brackish lake studied by close-interval siphon sampling. Verh. int. Ver. Limnol. 22: 2190–2194.

    Google Scholar 

  • Maykut, G. A. & T. C. Grenfell, 1975. The spectral distribution of light beneath first-year sea-ice in the Arctic Ocean. Limnol. Oceanogr. 20: 554–563.

    Google Scholar 

  • Montesinos, E., R. Guerrero, C. Abella & I. Esteve, 1983. Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl. envir. Microbiol. 46: 1007–1016.

    Google Scholar 

  • Parker, R. D., J. R. Lawrence & U. T. Hammer, 1983. A comparison of phototrophic bacteria in two adjacent saline meromictic lakes. Hydrobiologia 105: 53–61.

    Google Scholar 

  • Parkin,T. B. & T. D. Brock, 1980a. Photosynthetic bacterial production in lakes: The effects of light intensity. Limnol. Oceanogr. 25: 711–718.

    Google Scholar 

  • Parkin, T. B. & T. D. Brock, 1980b. The effects of light quality on the growth of phototrophic bacteria in lakes. Arch. Microbiol. 125: 19–27.

    Google Scholar 

  • Pfennig, N. & H. G. Truper, 1974. The phototrophic bacteria. In R. E. Buchanan & N. E. Gibbons (eds), Bergey's Manual of Determinative Bacteriology, 8th edition. Williams & Wilkins, Baltimore: 24–64.

    Google Scholar 

  • Pedros-Alio, C., E. Montesinos & R. Guerrero, 1983. Factors determining annual changes in bacterial photosynthetic pigments in holomictic Lake Ciso, Spain. Appl. envir. Microbiol. 46: 999–1006.

    Google Scholar 

  • Postgate, J. R., 1979. The Sulphate Reducing Bacteria. Cambridge University Press, UK: 26–27.

    Google Scholar 

  • Sorokin, J. I. & N. Donato, 1975. On the carbon and sulphur metabolism in the meromictic Lake Faro (Sicily). Hydrobiologia 47: 241–252.

    Google Scholar 

  • Stanier, R. Y. & J. H. C. Smith, 1960. The chlorophylls of green bacteria. Biochem. Biophys. Acta 41: 478–484.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Fish. Res. Bd Can., Bulletin 167: 21–26.

    Google Scholar 

  • Takahashi, M. & S. Ichimura, 1970. Photosynthetic properties and growth of photosynthetic sulphur bacteria in lakes. Limnol. Oceanogr. 15: 929–944.

    Google Scholar 

  • Tominaga, H. & F. Fukui, 1981. Saline lakes at Syowa Oasis, Antarctica. Hydrobiologia 82: 375–389.

    Google Scholar 

  • Truper, H. G. & N. Pfennig, 1981. Characterization and identification of the anoxygenic phototrophic bacteria. In M. P. Starr, H. Stolp, H. G. Truper, A. Ballows & H. G. Schlegel (eds), The Prokaryotes, I. Springer-Verlag, Berlin: 299–312.

    Google Scholar 

  • van Gemerden, H., 1980. Survival of Chromatium vinosum at low light intensities. Arch. Microbiol. 125: 115–121.

    Google Scholar 

  • van Niel, C. B., 1971. Techniques for the enrichment, isolation and maintenance of photosynthetic bacteria. In A. San Pietro (ed.), Methods in Enzymology, 23 (A). Academic Press, New York: 3–28.

    Google Scholar 

  • Zobell, C. E., 1946. Studies on redox potential of marine sediments. Bull. am. Ass. pet. Geol. 30(4): 477–513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, C.M., Burton, H.R. The ecology of photosynthetic bacteria in Burton Lake, Vestfold Hills, Antarctica. Hydrobiologia 165, 1–11 (1988). https://doi.org/10.1007/BF00025569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025569

Key words

Navigation