Skip to main content
Log in

A tandem of α-tubulin genes preferentially expressed in radicular tissues from Zea mays

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The identification of a cDNA (MR19) corresponding to a maize α-tubulin and homologous genomic clones (MG19/6 and MG19/14) is described. The cDNA has been isolated by differential screening of a cDNA maize root library. We have found two α-tubulin genes in a tandem arrangement in the genomic clones, separated by approximately 1.5 kbp. One of the genes (gene I) contains an identical nucleotide sequence which corresponds to the cDNA clone. The two deduced proteins from DNA sequences are very similar (only two conservative replacements in 451 amino acids) and they share a high homology as compared with the published α-tubulin sequences from other systems and in particular with the Arabidopsis thaliana and Chlamydomonas reinhardtii sequences reported. The structure of both genes is also very similar; it includes two introns, of 1.7 kbp and 0.8 kbp respectively, in each gene and only one intron placed at a homologous position in relation to Arabidopsis thaliana genes. By using specific 3′ probes it appears that both genes are preferentially expressed in the radicular system of the plant. The α-tubulin gene family of Zea mays seems to be represented by at least 3 or 4 members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi Y, Toda T, Niwa O, Yanagida M. Differential expressions of essential and nonessential α-tubulin genes in Schizosaccaromyces pombe. Mol Cell Biol 6: 2168–2178 (1986).

    PubMed  Google Scholar 

  2. Biggin MD, Gibson TJ, Hong GF: Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci USA 80: 3963–3965 (1983).

    PubMed  Google Scholar 

  3. Boedtker H. Conformation independent molecular weight determinations of RNA by gel electrophoresis. Biochim Biophys Acta 240: 448–453 (1971).

    Google Scholar 

  4. Burr B, Burr FA. Controlling element events at the shrunken locus in maize. Genetics 98: 143–156 (1981).

    Google Scholar 

  5. Carrino JJ, Laffter TG. Transcription of α-tubulin and histone H4 begins at the same point in the Physarum cell cycle. J Cell Biol 102: 1666–1670 (1986).

    Article  PubMed  Google Scholar 

  6. Chaubet N, Philipps G, Chaboute ME, Ehling M, Gigot C. Nucleotide sequence of two corn histone H3 genes. Genomic organization of the corn histone H3 and H4 genes. Plant Mol biol 6: 253–263 (1986).

    Google Scholar 

  7. Cleveland DW, Sullivan KF. Molecular biology and genetics of tubulin. Ann Rev Biochem 54: 331–365 (1985).

    Article  PubMed  Google Scholar 

  8. Cowan NJ, Dobner PR, Fuchs EV, Cleveland DW. Expression of human alpha-tubulin genes: interspecies conservation of 3′ untranslated regions. Mol Cell Biol 3: 1738–1745 (1983).

    PubMed  Google Scholar 

  9. Cyr RJ, Bustos MM, Guiltinan MJ, Fosket DE. Developmental modulation of tubulin protein and mRNA levels during somatic embryogenesis in cultured carrot cells. Planta 171: 365–376 (1987).

    Google Scholar 

  10. Davis RW, Bolstein D, Roth RJ. A Manual for Genetic Engineering. Advanced Bacterial Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1980).

    Google Scholar 

  11. Dean C, Van denElzen P, Tanaki S, Dunsmuir P, Bedbrook J. Differential expression of the eight genes of the petunia rubulose bisphosphate carboxylase small subunit multi-gene family. EMBO J 4: 3055–3061 (1985).

    Google Scholar 

  12. Feinberg AP, Vogelstein B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  13. Gallardo D, Reina M, Rigau J, Boronat A, Palau J. Genomic organization of the 28 kDa glutelin-2 gene from maize. Plant Sci 54: 211–218 (1988).

    Article  Google Scholar 

  14. Ginzburg I, Teichman A, Griffin WST, Littauer UZ. Differential expression of α-tubulin mRNA in rat cerebellum as revealed by in situ hybridization. FEBS Lett 194: 161–164 (1986).

    Article  PubMed  Google Scholar 

  15. Gubler U, Hoffman BJ. A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269 (1983).

    Article  PubMed  Google Scholar 

  16. Gunning BES, Hardham AR. Microtubules. Ann Rev Plant Physiol 33: 651–698 (1982).

    Article  Google Scholar 

  17. Hanahan D. Techniques for transformation of E. coli. In: Glover DM (ed) DNA Cloning — A Practical Approach, pp. 109–137. IRL press, Oxford (1985).

    Google Scholar 

  18. Hanley BA, Schuler MA. Plant intron sequences: evidence for distinct groups of introns. Nucleic Acids Res 16: 7159–7175 (1988).

    PubMed  Google Scholar 

  19. Hawkins JD. A survey on intron and exon lenghts. Nucleic Acids Res 16: 9893–9908 (1988).

    PubMed  Google Scholar 

  20. Hecht NB, Distel RJ, Yelick PC, Tanhauser SM, Driscoll CE, Goldberg E, Tung KSK. Localization of a highly divergent mammalian testicular α-tubulin that is not detectable in brain. Mol Cell Biol 8: 996–1000 (1988).

    PubMed  Google Scholar 

  21. Hussey PJ, Gull K. Multiple isotypes of α- and β-tubulin in the plant Phaseolus vulgaris. FEBS Lett 181: 113–118 (1985).

    Article  Google Scholar 

  22. Hussey PJ, Lloyd CW, Gull K. Differenital and developmental expression of β-tubulins in a higher plant. J Biol Chem 263: 5474–5479 (1988).

    PubMed  Google Scholar 

  23. Huynh TU, Young RA, Davis RW. Constructing and screening cDNA libraries in lambda-gt 10 and lambda-gt 11. In/ Glover DM (ed) DNA cloning—A Practical Approach, pp. 49–78, IRL Press, Oxford (1985).

    Google Scholar 

  24. Kimmel BE, Samson S, Wu J, Hirschberg R, Yarbrough LR. Tubulin genes of the African trypanosome Trypanosoma brucei rhodesiense: nucleotide sequence of a 3.7 kbp fragment containing genes for alpha and beta tubulins. Gene 35: 237–248 (1985).

    Article  PubMed  Google Scholar 

  25. Lemischka I, Sharp PA. The sequences of an expressed rat α-tubulin gene and a pseudogene with an inserted repetitive element. Nature 300: 330–335 (1982).

    PubMed  Google Scholar 

  26. Little M, Seehaus T. Comparative analysis of tubulin sequences. Comp Biochem Physiol 90: 655–670 (1988).

    Google Scholar 

  27. Lloyd CW. The Plant Citoskeleton: The impact of fluorescence microscopy. Ann Rev Plant Physiol 38: 119–139 (1987).

    Google Scholar 

  28. Ludwig SR, Oppenheimer DG, Silflow CD, Snustad DP. Characterization of the α-tubulin gene family of Arabidopsis thaliana. Proc Natl Acad Sci USA 84: 5833–5837 (1987).

    PubMed  Google Scholar 

  29. Ludwig SR, Oppenheimer DG, Silflow CD, Snustad DP. The α1-tubulin gene of Arabidopsis thaliana: primary structure and preferential expression in flowers. Plant Mol Biol 10: 311–321 (1988).

    Google Scholar 

  30. Mages W, Salbaum JM, Harper JF, Schmilt R. Organization and structure of Volvox α-tubulin genes. Mol Gen Genet 213: 449–458 (1988).

    PubMed  Google Scholar 

  31. Maniatis T, Fritsch EF, Sambrook J. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  32. Morejohn LC, Fosket DE. Higher plant tubulin identified by self-assembly into microtubules in vitro. Nature 297: 426–428 (1982).

    PubMed  Google Scholar 

  33. Oppenheimer DG, Haas N, Silflow CD, Snustad DP. The β-tubulin gene family of Arabidopsis thaliana: preferential accumulation of the β1 transcript in roots. Gene 63: 87–102 (1988).

    Article  PubMed  Google Scholar 

  34. Philipps G, Chabet N, Chaboute ME, Ehling M, Gigot C. Genomic organization and nucleotide sequences of two corn histone H4 genes. Gene 42: 225–229 (1986).

    Article  PubMed  Google Scholar 

  35. Picquot P, Lambert AM. Tubulin from monocotyledon endosperm cells: Particular biochemical and immunological properties. J Plant Physiol 132: 561–568 (1988).

    Google Scholar 

  36. Pratt LF, Okamura S, Cleveland DW. A divergent testisspecific α-tubulin isotype that does not contain a dosed C-terminal tyrosine. Mol Cell Biol 7: 552–555 (1987).

    PubMed  Google Scholar 

  37. Queen C, Korn LJ. A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Res 12: 581–599 (1984).

    PubMed  Google Scholar 

  38. Raha D, Sen K, Biswas BB. cDNA cloning of β-tubulin gene and organisation of tubulin genes in Vigna radiata (mung bean) genome. Plant Mol Biol 9: 565–571 (1987).

    Google Scholar 

  39. Rigby PWJ, Diekmann M, Rhodes C, Berg P. Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113: 237–251 (1977).

    PubMed  Google Scholar 

  40. Sanger F, Nicklen S, Coulsen AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  41. Silfow CD, Chisholm RL, Conner TW, Ranum LPW. The two alpha-tubulin genes of Clamydomonas renhardtii code for slightly different proteins. Mol Cell Biol 5: 2389–2398 (1985).

    PubMed  Google Scholar 

  42. Silfow CD, Oppenheimer DG, Kopczak SD, Ploense SE, Ludwig SR, Haas N, Snustad PD. Plant tubulin genes: structure and differential expression during development. Dev Genet 8: 435–460 (1987).

    Google Scholar 

  43. Schatz PJ, Solomon F, Botstein D. Genetically essential and nonessential α-tubulin genes specify functionally interchangeable proteins. Mol Cell Biol 6: 3772–3733 (1986).

    Google Scholar 

  44. Sternlicht H, Yaffe MB, Farr GW. A model of the nucleotide-binding site in tubulin. FEBS Lett 214: 226–235 (1987).

    Article  PubMed  Google Scholar 

  45. Stiefel V, Perez-Grau LI, Albericio F, Giralt E, Ruiz-Avila L, Ludevid MD, Puigdomenech P. Molecular cloning of cDNAs encoding a putative cell wall protein from Zea mays and immunological identification of related polypeptides. Plant Mol Biol 11: 483–493 (1988).

    Google Scholar 

  46. St John TP, Davis RW. Isolation of galactose inducible DNA sequences from Saccharomyces cerevisiae by differential plaque filter hybridization. Cell 16: 443–452 (1979).

    Article  PubMed  Google Scholar 

  47. Sullivan KF. Structure and utilization of tubulin isotypes. Ann Rev Cell Biol 4: 687–716 (1988).

    PubMed  Google Scholar 

  48. Theurkauf WE, Baum H, Bo J, Wensink PC. Tissuespecific and constitutive α-tubulin genes of Drosophila melanogaster. Proc Natl Acad Sci USA 83: 8477–8481 (1986).

    PubMed  Google Scholar 

  49. Villasante A, Wang D, Dobner P, Dolph P, lewis SA, Cowan NJ. Six mouse α-tubulin mRNAs encode five distinct isotypes: testis-specific expression of two sister genes. Mol Cell Biol 6: 2409–2419 (1986).

    PubMed  Google Scholar 

  50. Yanisch-Pervon C, Vieira J, Messing J. Improved M13 phage cloning and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montoliu, L., Rigau, J. & Puigdomènech, P. A tandem of α-tubulin genes preferentially expressed in radicular tissues from Zea mays . Plant Mol Biol 14, 1–15 (1990). https://doi.org/10.1007/BF00015650

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015650

Key words

Navigation