Skip to main content
Log in

Embryology of Chaoborus-induced spines in Daphnia pulex

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Daphnia pulex (Crustacea: Cladocera) embryos were found to be sensitive to a chemical cue (kairomone) in an extract of the predator Chaoborus americanus (Insecta:Diptera). Sensitivity of embryos to the kairomone remains throughout embryonic development. Apparently declining sensitivity as development proceeds may be due to the amount of time the embryos are exposed to the kairomone. Male embryos were also found to be sensitive to the kairomone. The smallest eggs within a brood produced small offspring, which showed the antipredator morphology to a significantly lower degree than largest eggs. The production of the neckteeth is described, at the developmental stage in the maturation of the Daphnia coinciding approximately with the escape of the embryos from the brood chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baldass, F. V., 1942. Entwicklung von Daphnia pulex. Zool. Jb. 67: 1–60.

    Google Scholar 

  • Banta, A. M., 1939. Studies on the physiology, genetics and evolution of some Cladocera. Carnegie Inst. of Washington, Washington, D. C. Dept. of Genetics, No. 39.

    Google Scholar 

  • Banta, A. M. & L. A. Brown, 1929. Control of sex in Cladocera: Crowding the mothers as a means of controlling male production. Physiol. Zool. 2: 80–92.

    Google Scholar 

  • Black, A. R. & S. I. Dodson, 1990. Demographic costs of Chaoborus-induced phenotypic plasticity in Daphnia pulex. Oecologia 83: 117–122.

    Google Scholar 

  • Dodson, S. I., 1974. Adaptive change in plankton morphology in response to size-selective predation: A new hypothesis of cyclomorphosis. Limnol. Oceanogr. 19: 721–729.

    Google Scholar 

  • Dodson, S. I., 1989. The ecological role of chemical stimuli for the zooplankton: predator-induced morphology in Daphnia. Oecologia 78: 361–367.

    Google Scholar 

  • Green, J., 1954. Size and reproduction in Daphnia magna (Crustacea:Cladocera) Proc. zool. soc. Lond. 124: 535–545.

    Google Scholar 

  • Goulden, C. E., L. Henry & D. Berrigan, 1987. Egg size, postembryonic yolk, and survival ability. Oecologia 72: 28–31.

    Google Scholar 

  • Hairston, N. G. Jr. & B. T. De Stasio, Jr., 1988. Rate of evolution slowed by a dormant propagule pool. Nature 336: 239–242.

    Google Scholar 

  • Hanazato, T., 1990. Induction of helmet development by a Chaoborus factor in Daphnia ambigua during juvenile stages. J. Plankton. Res. 12: 1287–1294.

    Google Scholar 

  • Havel, J. E., 1987. Predator-induced defenses: A review. pp. 263–278 in W. C. Kerfoot & A. Sih (eds) Predation: Direct and Indirect Impacts on Aquatic Communities. New England Press, Hanover, N.H.

    Google Scholar 

  • Havel, J. E. & S. I. Dodson, 1984. Chaoborus predation on typical and spined morphs of Daphnia pulex: Behavioral observations. Limnol. Oceanogr. 29: 487–494.

    Google Scholar 

  • Havel, J. E. & S. I. Dodson, 1987. Reproductive costs of Chaoborus-induced polymorphism in Daphnia pulex. Hydrobiol. 150: 273–281.

    Google Scholar 

  • Hebert, P. D. N. & P. M. Grewe, 1985. Chaoborus induced shifts in the morphology of Daphnia ambigua. Limnol. Oceanogr. 30: 1291–97.

    Google Scholar 

  • Hobaek, A. & P. Larsson, 1990. Sex determination in Daphnia magna. Ecology 71: 2255–2268.

    Google Scholar 

  • Jacobs, J., 1980. Environmental control of cladoceran cyclomorphosis via target-specific growth factors in the animal. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. Univ. Press of New England, Hanover, N.H.: 429–437.

    Google Scholar 

  • Kerfoot, W. C., 1974. Egg size cycle of a cladoceran. Ecology 55: 1259–1270.

    Google Scholar 

  • Krueger, D. A. & S. I. Dodson, 1981. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. 26: 219–223.

    Google Scholar 

  • Lampert, W. & U. Schober, 1980. The importance of ‘threshold’ food concentrations. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. Univ. Press of New England, Hanover, N.H.

    Google Scholar 

  • Lubbock, J., 1857. An account of the two methods of reproduction in Daphnia, and of the structure of the ephippium. Phil. Trans. r. Soc., Lond. 57: 79–100.

    Google Scholar 

  • Lynch, M., L. J. Weider & W. Lampert, 1986. Measurement of the carbon balance in Daphnia. Limnol. Oceanogr. 31: 17–33.

    Google Scholar 

  • Minitab, L., 1987. Release 6.1.1. Minitab, Inc. 3081 Enterprise Dr., State College, PA. 16801.

    Google Scholar 

  • Parejko, K. & S. I. Dodson, 1990. Progress towards characterization of a predator/prey kairomone: Daphnia pulex and Chaoborus americanus. Hydrobiol., 198: 51–59.

    Google Scholar 

  • Parejko, K., 1991a. Predation by chaoborids on typical and spined Daphnia pulex. Freshwat. Biol., 25: 211–217.

    Google Scholar 

  • Parejko, K. & S. I. Dodson, 1991b. The evolutionary ecology of an antipredator reaction norm: Daphnia pulex and Chaoborus americanus. Evolution, in press.

  • Riessen, H. P. & W. G. Sprules, 1990. Demographic costs of antipredator defenses in Daphnia pulex. Ecology 71: 1536–1546.

    Google Scholar 

  • Schwartz, S., 1984. Life history strategies in Daphnia: a review and predictions. Oikos 42: 114–122.

    Google Scholar 

  • Sih, A., 1987. Predators and prey lifestyles: an evolutionary and ecological overview. In Kerfoot, W. C. & A. Sih (eds) Predation: Direct and Indirect Impacts on Aquatic Communities. Univ. Press of New England, Hanover, N.H.: 203–224.

    Google Scholar 

  • Snedecor, G. W. & W. G. Cochran, 1980. Statistical Methods, 7th ed. Iowa State Univ. Press, Ames, Iowa.

    Google Scholar 

  • Tessier, A. J. & N. L. Consolatti, 1989. Variation in offspring size in Daphnia and consequences for individual fitness. Oikos 56: 269–276.

    Google Scholar 

  • Threlkeld, S., 1979. Estimating cladoceran birth rates: The Importance of egg mortality and the egg age distribution. Limnol. Oceanogr. 24: 601–612.

    Google Scholar 

  • Threlkeld, S., 1987.Daphnia life history strategies and resource allocation patterns. In Daphnia, Mem. Ist. ital. Idrobiol. 45: 353–366.

  • Walls, M. & M. Ketolla, 1989. Effects of predator-induced spines on individual fitness in Daphnia pulex. Limnol. Oceanogr. 34: 390–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parejko, K. Embryology of Chaoborus-induced spines in Daphnia pulex . Hydrobiologia 231, 77–84 (1992). https://doi.org/10.1007/BF00006499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006499

Key words

Navigation