Skip to main content
Log in

Beaver population fluctuations and tropospheric methane emissions in boreal wetlands

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Measurements of net methane flux were made during the 1988 ice-free season (May–October) at a beaver-meadow complex in northern Minnesota, USA. The site included upland boreal forest, sedge meadow, submerged aquatic plants, and the open water of a beaver pond. Annual fluxes were 8–11 g C/m2 in the permanently wetted zones and 0.2–0.4 g C/m2 at the occasionally inundated meadow and forest sites. These data, when coupled with long-term (46 yr) data on beaver (Castor canadensis) population size and habitat alteration, suggest that about 1% of the recent rise in atmospheric methane may be attributable to pond creation by beaver in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson LP & Hall JR (1976) Methane distribution and production in the Georgia Salt Marsh. Estuarine Coastal Mar. Sci. 4: 677–686

    Google Scholar 

  • Andrewartha HG & Birch L (1954) The Distribution and Abundance of Animals. University of Chicago Press, Chicago, Illinois, USA

    Google Scholar 

  • Baker-Blocker A, Donahue TM & Mancy KH (1977) Methane flux from wetland areas. Tellus 29: 245–250

    Google Scholar 

  • Bartlett KB, Bartlett DS, Harriss DC & Sebacher DI (1987) Methane emissions along a salt marsh salinity gradient. Biogeochem. 4: 183–202

    Google Scholar 

  • Bartlett KB, Crill PM, Sebacher DI, Harriss RC, Wilson JO (1988) Methane flux from the central Amazonian floodplain. J. Geophy. Res. 93: 1571–1582

    Google Scholar 

  • Blake DR & Rowland FS (1988) Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science 239: 1129–1131

    Google Scholar 

  • Bohn HL (1968) Electromotive force of inert electrodes in soil suspensions. Proc. Soil Sci. Soc. Am. 32: 211–215

    Google Scholar 

  • Broschart MR, Johnston CA & Naiman RJ (1989) Predicting beaver colony density in boreal landscapes. J. Wildlife Mgt. 53: 929–934

    Google Scholar 

  • Cicerone RJ (1988) Methane linked to warming. Nature 334: 198

    Google Scholar 

  • Cicerone RJ & Oremland RJ (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2: 299–327

    Google Scholar 

  • Cicerone RJ & Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J. Geophy. Res. 86 (C8): 7203–7209

    Google Scholar 

  • Cicerone RJ, Shetter JD & Delwiche CC (1983) Seasonal variation of methane flux from a California rice paddy. J. Geophy. Res. 88 (C15): 11022–11024

    Google Scholar 

  • Conger PS (1943) Ebullition of gases from marsh and lake waters. Publication No. 59, Chesapeake Biological Laboratory, Solomon, Maryland, USA, 42 p

    Google Scholar 

  • Craig H & Chou CC (1982) Methane: The record in polar ice cores. Geophy. Res. Letters 9: 1221–1224

    Google Scholar 

  • Dacey JWH (1980) Internal winds in water lilies: An adaptation for life in anaerobic sediments. Science 210: 1017–1019

    Google Scholar 

  • Dacey JWH & Klug MJ (1979) Methane efflux from lake sediments through water lilies. Science 203: 1253–1255

    Google Scholar 

  • DeLaune RD, Hambrick GA & Patrick, WH Jr. (1980) Degradation of hydrocarbons in oxidized and reduced sediments. Mar. Poll. Bull. 11: 103–106

    Google Scholar 

  • Devol AH, Richey JE, Clark JA, King SL & Martinelli LA (1988) Methane emissions to the troposphere from the Amazone floodplain. J. Geophy Res. 93 (D2): 1583–1592

    Google Scholar 

  • Dickinson RE & Cicerone RJ (1986) Future global warming from atmospheric trace gases. Nature 319: 109–115

    Google Scholar 

  • Ehhalt DH & Schmidt U (1978) Sources and sinks of atmospheric methane. Pure Appl. Geophy. 116: 452–464

    Google Scholar 

  • Ford TE & Naiman RJ (1988) Alteration of carbon cycling by beaver: methane evasion rates from boreal forest streams and rivers. Can. J. Zool. 66: 529–533

    Google Scholar 

  • Francis MM, Naiman RJ & Melillo JM (1985) Nitrogen fixation in subarctic streams influenced by beaver (Castor canadensis). Hydrobiologia 121: 193–202

    Google Scholar 

  • Harriss RC, Sebacher DI & Day, FP Jr. (1982) Methane flux in the Great Dismal Swamp. Nature 297: 673–674

    Google Scholar 

  • Hungate RE (1966) The Rumen and its Microbes. Academic Press, New York, USA

    Google Scholar 

  • Jenkins SH & Busher PE (1979) Castor canadensis. Mammalian Species 120: 1–8

    Google Scholar 

  • Johnston CA & Naiman RJ (1990a) The use of a geographic information system to analyze long-erm landscape alteration by beaver. Landscape Ecol. 4: 5–19

    Google Scholar 

  • Johnston CA & Naiman RJ (1990b) Aquatic patch creation in relation to beaver population trends. Ecology 71: 1617–1621

    Google Scholar 

  • Kelly CA & Chynoweth DP (1981) The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis. Limnol. Oceanogr. 26: 891–897

    Google Scholar 

  • Khalil MAK & Rasmussen RA (1983) Sources, sinks and seasonal cycles of atmospheric methane. J. Geophy. Res. 88 (C9): 5131–5144

    Google Scholar 

  • King GM & Wiebe JW (1978) Methane release from soils of a Georgia salt marsh. Geochim. Cosmochim. Acta 42: 343–348

    Article  Google Scholar 

  • Koyama T (1963) Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen. J. Geophy. Res. 68: 3971–3973

    Google Scholar 

  • Kurmis V, Webb SL & Merriam JC Jr (1986) Plant communities of Voyageurs National Park, Minnesota, USA. Can. J. Bot. 64: 531–540

    Google Scholar 

  • Lacis A, Hansen J, Lee P, Mitchell T & Lebedeff S (1981) Greenhouse effect of trace gases, 1970–1980. Geophy. Res. Letters 8: 1035–1038

    Google Scholar 

  • Matthews E & Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cycles 1: 61–86

    Google Scholar 

  • Matthias AD, Yarger DN & RS Weinbeck (1978) A numerical evaluation of chamber methods for determining gas fluxes. Geophy. Res. Letters 5: 765–768

    Google Scholar 

  • Mitchell JFB (1989) The “greenhouse” effect and climate change. Rev. Geophy. 27: 115–139

    Google Scholar 

  • Naiman RJ (1988) Animal influences on ecosystem dynamics. BioScience 38: 750–752

    Google Scholar 

  • Naiman RJ & Melillo JM (1984) Nitrogen budget of a subarctic stream altered by beaver (Castor canadensis). Oecologia 62: 150–155

    Google Scholar 

  • Naiman RJ, Melillo JM & Hobbie JE (1986) Ecosystem alteration of a boreal forest stream by beaver (Castor canadensis). Ecology 67: 1254–1269

    Google Scholar 

  • Naiman RJ, Johnston CA & Kelley JC (1988) Alteration of North American streams by beaver. BioScience 38: 753–762

    Google Scholar 

  • Nisbet EG (1989) Some northern sources of atmospheric methane: production, history and future implications. Can. J. Earth Sci. 26: 1603–1611

    Google Scholar 

  • Page AL (Ed.) (1982) Methods of Soil Analysis, Part II. American Society of Agronomy and Soil Science Society of America. Madison, Wisconsin. 2nd edition

  • Rasmussen RA & Khalil MAK (1983) Global production of methane by termites. Nature 301: 700–702

    Google Scholar 

  • Rasmussen RA & Khalil MAK (1984) Atmospheric methane in the recent and ancient atmospheres: concentrations, concentrations, trends and interhemispheric gradient. J. Geophy. Res. 89: 599–605

    Google Scholar 

  • Richey JE, Devol AH, Wofsy SC, Victoria R & Riberio MNG (1988) Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol. Oceanogr. 33: 551–561

    Google Scholar 

  • Rudd JW & Hamilton RD (1978) Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol. Oceanogr. 23: 337–348

    Google Scholar 

  • Rudd JWM & Taylor CD (1980) Methane cycling in aquatic environments. Adv. Aquat. Microbiol. 2: 77–150

    Google Scholar 

  • Sebacher DI & Harriss RC (1982) A system for measuring methane fluxes from inland and coastal wetland environments. J. Environ. Qual. 11: 34–37

    Google Scholar 

  • Sebacher DI, Harriss RC & Bartlett KB (1985) Methane emissions to the atmosphere through aquatic plants. J. Environ. Qual. 14: 40–46

    Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB, Sebacher SB & Grice SS (1986) Atmospheric methane sources: Alaskan tundra bogs, an alpine fen and a subarctic boreal marsh. Tellus 38B: 1–10

    Google Scholar 

  • Seiler W, Holzapfel-Pschorn A, Conrad R & Scharffe D (1984) Methane emission from rice paddies. J. Atmos. Chem. 1: 241–268

    Google Scholar 

  • Sheppard JC, Westberg H, Hopper JF, Ganesan K & Zimmerman P (1982) Inventory of global methane sources and their production rates. J. Geophy. Res. 87: 1305–1312

    Google Scholar 

  • Starfield AM & Bleloch AL (1986) Building Models for Conservation and Wildlife Management. Macmillan Publishing Company, New York, USA

    Google Scholar 

  • Stauffer B, Fischer G, Neftel A & Oeschger H (1985) Increase of atmospheric methane recorded in Antarctic ice core. Science 229: 1386–1388

    Google Scholar 

  • Svensson BH (1980) Carbon dioxide and methane fluxes from the ombrotrophic parts of a subarctic mire. Ecol. Bull. 30: 235–250

    Google Scholar 

  • Tyurnin BN (1984) Factors determining numbers of the river beaver (Castor fiber) in the European north. Soviet J. Ecol. (in English) 14: 43–50

    Google Scholar 

  • Whalen SC & Reeburgh WS (1988) A methane flux time series for tundra environments Global Biogeochem. Cycles 2: 399–409

    Google Scholar 

  • Whalen SC & Reeburgh WS (1989) A methane flux transect along the Trans-Alaska pipeline haul road. Tellus (in press)

  • Williams RT & Crawford RL (1984) Methane production in Minnesota peatlands. Appl. Environ. Microbiol. 47 (6): 1266–1271

    Google Scholar 

  • Woodwell GM, Whittaker RH, Reiners WA, Likens GE, Delwiche CC & Botkin DB (1978) The bota and the world carbon budget. Science 199: 141–146

    Google Scholar 

  • Zehnder AJB (1978) Ecology of methane formation. In: Mitchell R (Ed) Pollution Microbiology, Vol 2 (pp 349–376). J. Wiley & Sons, New York, USA

  • Zeikus JG & Winfrey MR (1976) Temperature limitation of methanogenesis in aquatic sediments. App. Environ. Microbiol. 31: 99–107

    Google Scholar 

  • Zimmerman PR, Greenberg JP, Wandiga SO & Crutzen PJ (1982) Termites: A potentially large source of atmospheric methane, carbon dioxide and molecular hydrogen. Science 218: 563–565

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naiman, R.J., Manning, T. & Johnston, C.A. Beaver population fluctuations and tropospheric methane emissions in boreal wetlands. Biogeochemistry 12, 1–15 (1991). https://doi.org/10.1007/BF00002623

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002623

Key words

Navigation