Skip to main content

Advertisement

Log in

Stoichiometry in producer-grazer systems: Linking energy flow with element cycling

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

All organisms are composed of multiple chemical elements such as carbon, nitrogen and phosphorus. While energy flow and element cycling are two fundamental and unifying principles in ecosystem theory, population models usually ignore the latter. Such models implicitly assume chemical homogeneity of all trophic levels by concentrating on a single constituent, generally an equivalent of energy. In this paper, we examine ramifications of an explicit assumption that both producer and grazer are composed of two essential elements: carbon and phosphorous. Using stoichiometric principles, we construct a two-dimensional Lotka-Volterra type model that incorporates chemical heterogeneity of the first two trophic levels of a food chain. The analysis shows that indirect competition between two populations for phosphorus can shift predator—prey interactions from a (+, −) type to an unusual (−, −) class. This leads to complex dynamics with multiple positive equilibria, where bistability and deterministic extinction of the grazer are possible. We derive simple graphical tests for the local stability of all equilibria and show that system dynamics are confined to a bounded region. Numerical simulations supported by qualitative analysis reveal that Rosenzweig’s paradox of enrichment holds only in the part of the phase plane where the grazer is energy limited; a new phenomenon, the paradox of energy enrichment, arises in the other part, where the grazer is phosphorus limited. A bifurcation diagram shows that energy enrichment of producer—grazer systems differs radically from nutrient enrichment. Hence, expressing producer—grazer interactions in stoichiometrically realistic terms reveals qualitatively new dynamical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agren, G. and E. Bosatta (1996). Theoretical Ecosystem Ecology: Understanding Element Cycles, NY: Cambridge University Press.

    Google Scholar 

  • Andersen, T. (1997). Pelagic Nutrient Cycles: Herbivores as Sources and Sinks, NY: Springer-Verlag.

    Google Scholar 

  • Andersen, T. and D. O. Hessen (1991). Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol. Oceanogr. 36, 807–814.

    Article  Google Scholar 

  • DeMott, W. R. (1998). Utilization of cyanobacterium and phosphorus-deficient green algae as a complementary resource by daphnids. Ecology 79, 2463–2481.

    Article  Google Scholar 

  • Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. UK 55, 825–855.

    Google Scholar 

  • Edelstein-Keshet, L. and M. D. Rausher (1989). The effects of inducible plant defenses on herbivore populations. Am. Nat. 133, 787–810.

    Article  Google Scholar 

  • Elser, J. J., T. H. Chrzanowski, R. W. Sterner and K. H. Mills (1998). Stoichiometric constraints on food web dynamics: a whole-lake experiment on the Canadian shield. Ecosystems 1, 120–136.

    Article  Google Scholar 

  • Elser, J. J., E. R. Marzolf and C. R. Goldman (1990). Can. J. Fisheries Aquatic Sci. 47, 1468–1477.

    Article  Google Scholar 

  • Elser, J. J. and J. Urabe (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80, 735–751.

    Article  Google Scholar 

  • Hagen, J. B. (1992). An Entangled Bank: The Origins of Ecosystem Ecology, New Brunswick, NJ: Rutgers.

    Google Scholar 

  • Hessen, D. O. and T. Andersen (1992). The algae—grazer interface: feedback mechanism linked to elemental ratios and nutrient cycling. Archiv Fuer Hydrobiologie Ergebnisse der Limnologie 35, 111–120.

    Google Scholar 

  • Huxel, G. R. (1999). On the influence of food quality in consumer—resource interactions. Ecology Lett. 2, 256–261.

    Article  Google Scholar 

  • Kooijman, S. A. L. M. (2000). Dynamic energy and mass budgets in biological systems, Cambridge, U.K: Cambridge University Press.

    Google Scholar 

  • Koppel, J., J. Huisman, R. Wal and H. Olff (1996). Patterns of herbivory along productivity gradient: and empirical and theoretical investigation. Ecology 77, 736–745.

    Article  Google Scholar 

  • Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology 23, 399–418.

    Article  Google Scholar 

  • Lotka, A. J. (1925). Elements of Physical Biology, Baltimore: Williams and Wilkins. Reprinted as Elements of Mathematical Biology (1956) New York: Dover.

    MATH  Google Scholar 

  • McCann, K. S. (2000). The diversity-stability debate. Nature 405, 228–233.

    Article  Google Scholar 

  • Odum, E. P. (1959). Fundamentals of Ecology, Philadelphia: W.B. Saunders.

    Google Scholar 

  • Odum, E. P. (1968). Energy flow in ecosystems: a historical view. Am. Zoologist 8, 11–18.

    Google Scholar 

  • Odum, H. P. (1957). Trophic structure and productivity of Silver Springs. Ecol. Monographs 27, 55–112.

    Article  Google Scholar 

  • Odum, H. P. (1960). Ecological potential and analogue circuits for the ecosystem. Am. Scientist 48, 1–8.

    Google Scholar 

  • Reiners, W. A. (1986). Complementary models for ecosystems. Am. Nat. 127, 59–73.

    Article  Google Scholar 

  • Rosenzweig, M. L. (1971). Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387.

    Google Scholar 

  • Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science 195, 260–262.

    Google Scholar 

  • Schwinning, S. and A. J. Parsons (1996). Analysis of the coexistence mechanisms for grasses and legumes in grazing systems. J. Ecology 84, 799–813.

    Google Scholar 

  • Sterner, R. W. (1990). The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. Am. Nat. 136, 209–229.

    Article  Google Scholar 

  • Sterner, R. W., J. Clasen, W. Lampert and T. Weisse (1998). Carbon: phosphorus stoichiometry and food chain production. Ecology Lett. 1, 146–150.

    Article  Google Scholar 

  • Sterner, R. W. and D. O. Hessen (1994). Algal nutrient limitation and the nutrient of aquatic herbivores. Ann. Rev. Ecol. Syst. 25, 1–29.

    Article  Google Scholar 

  • Tilman, D. (1982). Resource Competition and Community Structure, Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Urabe, J. and R. W. Sterner (1996). Regulation of herbivore growth by the balance of light and nutrients. Proc. Natl. Acad. Sci. USA 93, 8465–8469.

    Article  Google Scholar 

  • White, T. C. R. (1993). The Inadequate Environment: Nitrogen and the Abundance of Animals, NY: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loladze, I., Kuang, Y. & Elser, J.J. Stoichiometry in producer-grazer systems: Linking energy flow with element cycling. Bull. Math. Biol. 62, 1137–1162 (2000). https://doi.org/10.1006/bulm.2000.0201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0201

Keywords

Navigation