Skip to main content
Log in

Modeling transcriptional control in gene networks—methods, recent results, and future directions

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical models are useful for providing a framework for integrating data and gaining insights into the static and dynamic behavior of complex biological systems such as networks of interacting genes. We review the dynamic behaviors expected from model gene networks incorporating common biochemical motifs, and we compare current methods for modeling genetic networks. A common modeling technique, based on simply modeling genes as ON—OFF switches, is readily implemented and allows rapid numerical simulations. However, this method may predict dynamic solutions that do not correspond to those seen when systems are modeled with a more detailed method using ordinary differential equations. Until now, the majority of gene network modeling studies have focused on determining the types of dynamics that can be generated by common biochemical motifs such as feedback loops or protein oligomerization. For example, these elements can generate multiple stable states for gene product concentrations, state-dependent responses to stimuli, circadian rhythms and other oscillations, and optimal stimulus frequencies for maximal transcription. In the future, as new experimental techniques increase the ease of characterization of genetic networks, qualitative modeling will need to be supplanted by quantitative models for specific systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, T., K. C. Martin, D. Bartsch and E. R. Kandel (1998). Memory suppressor genes: inhibitory constraints on the storage of long-term memory. Science 279, 338–341.

    Article  Google Scholar 

  • Adams, C. C. and J. L. Workman (1995). Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405–1421.

    Google Scholar 

  • Angel, P., K. Hattori, T. Smeal and M. Karin (1988). The jun proto-oncogene is positively autoregulated by its product, Jun—AP-1. Cell 55, 875–885.

    Article  Google Scholar 

  • Arkin, A., J. Ross and H. McAdams (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected E. coli cells. Genetics 149, 1633–1648.

    Google Scholar 

  • Arkin, A., P. Shen and J. Ross (1997). A test case of correlation metric construction of a reaction pathway from measurements. Science 277, 1275–1279.

    Article  Google Scholar 

  • Bagley, R. J. and L. Glass (1996). Counting and classifying attractors in high dimensional dynamical systems. J. Theor. Biol. 183, 269–284.

    Article  Google Scholar 

  • Banks, H. and J. M. Mahaffy (1978). Stability of cyclic gene models for systems involving expression. J. Theor. Biol. 74, 323–334.

    Article  MathSciNet  Google Scholar 

  • Bartsch, D., A. Casadio, K. A. Karl, P. Serodio and E. R. Kandel (1998). CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211–223.

    Article  Google Scholar 

  • Bartsch, D., M. Ghirardi, P. Skehel, K. A. Karl, S. Herder, M. Chen, C. Bailey and E. R. Kandel (1995). Aplysia CREB2 represses long-term facilitation: relief of repression converts a transient facilitation into long-term functional and structural change. Cell 83, 979–992.

    Article  Google Scholar 

  • Bazhan, S. I., V. A. Likhosvai and O. E. Belova (1995). Theoretical analysis of the regulation of interferon expression during priming and blocking. J. Theor. Biol. 175, 149–160.

    Article  Google Scholar 

  • Blattner, F. R. et al. (1997). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.

    Article  Google Scholar 

  • Bliss, R. D., P R. Painter and A. G. Marr (1982). Role of feedback inhibition in stabilizing the classical operon. J. Theor. Biol. 97, 177–93.

    Article  Google Scholar 

  • Blumenfeld, H., L. Zablow and B. Sabatini (1992). Evaluation of cellular mechanisms for modulation of Ca2+ transients using a mathematical model of fura-2 Ca2+ imaging in Aplysia sensory neurons. Biophys. J. 63, 1146–1164.

    Google Scholar 

  • Boden, J. (1997). Programming the Drosophila embryo. J. Theor. Biol. 188, 391–445.

    Article  Google Scholar 

  • Busenberg, S. and J. M. Mahaffy (1985). Interaction of spatial diffusion and delays in models of genetic control by repression. J. Math. Biol. 22, 313–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Byrne, J. H. et al. (1991). Neural and molecular bases of nonassociative and associative learning in Aplysia. Ann. New York Acad. Sci. 627, 124–149.

    Google Scholar 

  • The C. elegans Sequencing Consortium (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018.

    Article  Google Scholar 

  • Carrier, T. A. and J. D. Keasling (1997). Mechanistic modeling of prokaryotic mRNA decay. J. Theor. Biol. 189, 195–209.

    Article  Google Scholar 

  • Carrion, A. M., W. A. Link, F. Ledo, B. Mellstrom and J. R. Naranjo (1999). DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84.

    Article  Google Scholar 

  • Castano, J., R. Kineman and L. S. Frawley (1996). Dynamic monitoring and quantification of gene expression in single, living cells: a molecular basis for secretory cell heterogeneity. Mol. Endocrinol. 10, 599–605.

    Article  Google Scholar 

  • Cole, S. T. et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.

    Article  Google Scholar 

  • Collado-Vides, J., B. Magasanik and J. D. Gralla (1991). Control site location and transcriptional regulation in Escherichia coli. Microbiol. Rev. 55, 371–394.

    Google Scholar 

  • Collins, F. S., A. Patrinos, E. Jordan, A. Chakravati, R. Gesteland and L. Walters (1998). New goals for the U.S. human genome project: 1998–2003. Science 282, 682–689.

    Article  Google Scholar 

  • Dash, P. K. and A. N. Moore (1996). Characterization and phosphorylation of CREB-like proteins in Aplysia central nervous system. Brain Res. Mol. Brain Res. 39, 43–51.

    Article  Google Scholar 

  • Doedel, E. (1981). AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congr. Num. 30, 265–284.

    MATH  MathSciNet  Google Scholar 

  • Donachie, W. D. (1993). The cell cycle of Escherichia coli. Ann. Rev. Microbiol. 47, 199–230.

    Article  Google Scholar 

  • Dorman, C. J. (1995). DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. Microbiology (Reading) 141, 1271–1280.

    Article  Google Scholar 

  • Edwards, D. R. (1994). Cell signaling and the control of gene transcription. Trends Pharmacol. Sci. 15, 239–244.

    Article  Google Scholar 

  • Eisen, M. B., P. T. Spellman, P. O. Brown and D. Botstein (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868.

    Google Scholar 

  • Femino, A. M., F. S. Fay, K. Fogarty and R. H. Singer (1998). Visualization of single RNA transcripts in situ. Science 280, 585–590.

    Article  Google Scholar 

  • Gartner, K. (1990). A third component causing variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim. 24, 71–77.

    MathSciNet  Google Scholar 

  • Gerhold, D., T. Rushmore and C. T. Caskey (1999). DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168–173.

    Article  Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 61, 2340–2361.

    Article  Google Scholar 

  • Glass, L. and S. A. Kauffman (1973). The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129.

    Article  Google Scholar 

  • Glazewski, S., A. L. Barth, H. Wallace, M. McKenna, A. Silva and K. Fox (1999). Impaired experience-dependent plasticity in barrel cortex of mice lacking the α and δ isoforms of CREB. Cereb. Cortex 9, 249–256.

    Article  Google Scholar 

  • Goldbeter, A. (1995). A model for circadian oscillations in the Drosophila period (PER) protein. Proc. R. Soc. Lond. Ser. B 261, 319–324.

    Google Scholar 

  • Goodwin, B. C. (1965). Oscillatory behavior of enzymatic control processes. Adv. Enzyme Reg. 3, 425–439.

    Article  Google Scholar 

  • Griffith, J. S. (1968a). Mathematics of cellular control processes. I. Negative feedback to one gene. J. Theor. Biol. 20, 202–208.

    Article  Google Scholar 

  • Griffith, J. S. (1968b). Mathematics of cellular control processes. II. Positive feedback to one gene. J. Theor. Biol. 20, 209–216.

    Article  Google Scholar 

  • Guckenheimer, J. and P. Holmes (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer-Verlag.

    MATH  Google Scholar 

  • Guzowski, J. and J. L. McGaugh (1997). Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA 94, 2693–2698.

    Article  Google Scholar 

  • Hammond, B. J. (1993). Quantitative study of the control of HIV-1 gene expression. J. Theor. Biol. 163, 199–221.

    Article  Google Scholar 

  • Hauri, D. C. and J. Ross (1995). A model of excitation and adaptation in bacterial chemotaxis. Biophys. J. 68, 708–722.

    Google Scholar 

  • Hevroni, D. et al. (1998). Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. J. Mol. Neurosci. 10, 75–98.

    Google Scholar 

  • Hicks, K. A. and A. D. Grossman (1996). Altering the level and regulation of the major sigma subunit of RNA polymerase affects gene expression and development in Bacillus subtilus. Mol. Microbiol. 20, 201–212.

    Google Scholar 

  • Hilsenbeck, S. G., W. E. Friedrichs, R. Schiff, P. O’Connell, R. K. Hansen, C. K. Osborne and S. A. Fuqua (1999). Statistical analysis of array expression data as applied to the problem of tamoxifen resistance. J. Natl. Cancer Inst. 91, 453–459.

    Article  Google Scholar 

  • Howard, P. and R. Maurer (1995). A composite Ets/Pit-1 binding site in the prolactin gene can mediate transcriptional responses to multiple signal transduction pathways. J. Biol. Chem. 270, 20930–20936.

    Google Scholar 

  • Hunter, J., A. Kassam, C. Winrow, R. Rachubinski and J. Capone (1996). Crosstalk between the thyroid hormone and peroxisome proliferator-activated receptors in regulating peroxisome proliferator-responsive genes. J. Mol. Cell. Endocr. 116, 213–221.

    Article  Google Scholar 

  • Ishiura, M., S. Kutsuna, S. Aoki, H. Iwasaki, C. Andersson, A. Tanabe, S. Golden, C. Johnson and T. Kondo (1998). Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281, 1519–1523.

    Article  Google Scholar 

  • Itoh, K., B. Stevens, M. Schachner and R. D. Fields (1995). Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science 270, 1369–1372.

    Google Scholar 

  • Iyer, V. et al. (1999). The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87.

    Article  Google Scholar 

  • Jacobs, C. and L. Shapiro (1998). Microbial asymmetric cell division: localization of cell fate determinants. Curr. Opin. Gen. Dev. 8, 386–391.

    Article  Google Scholar 

  • Jacob, F. and J. Monod (1961). On the regulation of gene activity. Cold Spring Harb. Symp. Quant. Biol. 26, 193–211, 389–401.

    Google Scholar 

  • Karin, M. (1994). Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr. Opin. Cell Biol. 6, 415–424.

    Article  Google Scholar 

  • Keizer, J. (1987). Statistical Thermodynamics of Equilibrium Processes, New York: Springer-Verlag.

    Google Scholar 

  • Keller, A. (1994). Specifying epigenetic states with autoregulatory transcription factors. J. Theor. Biol. 170, 175–181.

    Article  Google Scholar 

  • Keller, A. (1995). Model genetic circuits encoding autoregulatory transcription factors. J. Theor. Biol. 172, 169–185.

    Article  Google Scholar 

  • Kerszberg, M. (1996). Accurate reading of morphogen concentrations by nuclear receptors: a formal model of complex transduction pathways. J. Theor. Biol. 183, 95–104.

    Article  Google Scholar 

  • Kerszberg, M. and J. Changeux (1994). A model for reading morphogenetic gradients: autocatalysis and competition at the gene level. Proc. Natl. Acad. Sci. USA 91, 5823–5827.

    Article  Google Scholar 

  • Kientzle, M. J. (1946). Properties of learning curves under varied distributions of practice. J. Exp. Psychol. 36, 187–211.

    Article  Google Scholar 

  • King, M. L. (1996). Molecular basis for cytoplasmic localization. Dev. Genet. 19, 183–189.

    Article  Google Scholar 

  • Ko, M. (1991). A stochastic model for gene induction. J. Theor. Biol. 153, 181–194.

    Google Scholar 

  • Koh, B. T., R. B. Tan and M. G. Yap (1998). Genetically structured mathematical modeling of trp attenuator mechanism. Biotech. Bioeng. 58, 502–509.

    Article  Google Scholar 

  • Kouzarides, T. and E. Ziff (1988). The role of the leucine zipper in the fos—jun interaction. Nature 336, 646–651.

    Article  Google Scholar 

  • Lamprecht, R., S. Hazvi and Y. Dudai (1997). cAMP response element-binding protein in the amygdala is required for long-but not short-term conditioned taste aversion memory. J. Neurosci. 17, 8443–8450.

    Google Scholar 

  • Lee, C., K. Bae and I. Edery (1998). The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER-TIM complex. Neuron 21, 857–867.

    Article  Google Scholar 

  • Leloup, J. C. and A. Goldbeter (1998). A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythms 13, 70–87.

    Article  Google Scholar 

  • Liu, B. Z., J. H. Peng, Y. C. Sun and Y. W. Liu (1997). A comprehensive dynamical model of pulsatile secretion of the hypothalamo-pituitary-gonadal axis in man. Comput. Biol. Med. 27, 507–513.

    Article  Google Scholar 

  • Luo, C., J. Loros and J. C. Dunlap (1998). Nuclear localization is required for function of the essential clock protein FRQ. EMBO J. 17, 1228–1235.

    Article  Google Scholar 

  • MacDonald, N. (1989). Biological Delay Systems: Linear Stability Theory, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • MacLeod, M. (1996). A possible role in chemical carcinogenesis for epigenetic, heritable changes in gene expression. Mol. Carcinog. 15, 241–250.

    Article  Google Scholar 

  • Mahaffy, J. M. (1984). Cellular control models with linked positive and negative feedback and delays. I: The models. J. Theor. Biol. 106, 89–102.

    Article  Google Scholar 

  • Mahaffy, J. M., D. A. Jorgensen and R. L. van der Heyden (1992). Oscillations in a model of repression with external control. J. Math. Biol. 30, 669–691.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahaffy, J. M. and C. V. Pao (1984). Models of genetic control by repression with time delays and spatial effects. J. Math. Biol. 20, 39–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Martin, K., D. Michael, J. Rose, M. Barad, A. Casadio, H. Zhu and E. R. Kandel (1997). MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18, 899–912.

    Article  Google Scholar 

  • McAdams, H. and A. Arkin (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819.

    Article  Google Scholar 

  • McAdams, H. and A. Arkin (1998). Simulation of prokaryotic genetic circuits. Ann. Rev. Biophys. Biomed. Struct. 27, 199–224.

    Article  Google Scholar 

  • McAdams, H. and L. Shapiro (1995). Circuit simulation of genetic networks. Science 269, 650–656.

    Google Scholar 

  • Merrow, M. W., N. Garceau and J. C. Dunlap (1997). Dissection of a circadian oscillation into discrete domains. Proc. Natl. Acad. Sci. USA 94, 3877–3882.

    Article  Google Scholar 

  • Mestl, T., C. Lemay and L. Glass (1996). Chaos in high-dimensional neural and gene networks. Physica D 98, 33–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Mestl, T., E. Plahte and S. W. Omholt (1995a). A mathematical framework for describing and analyzing gene regulatory networks. J. Theor. Biol. 176, 291–300.

    Article  Google Scholar 

  • Mestl, T., E. Plahte and S. W. Omholt (1995b). Periodic solutions in systems of piecewise linear differential equations. Dyn. Stab. Systems 10, 179–183.

    MathSciNet  MATH  Google Scholar 

  • Meyer, T., G. Waeber, J. Lin, W. Beckmann and J. Habener (1993). The promoter of the gene encoding cAMP response element binding protein contains cAMP response elements: evidence for positive autoregulation of gene transcription. Endocrinology 132, 770–780.

    Article  Google Scholar 

  • Meyers, S. and P. Friedland (1984). Knowledge-based simulation of genetic regulation in bacteriophage λ. Nucleic Acids Res. 12, 1–9.

    Google Scholar 

  • Molina, C., N. Foulkes, E. Lalli and P. Sassone-Corsi (1993). Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, and early response repressor. Cell 75, 875–886.

    Article  Google Scholar 

  • Novak, B., A. Csikasz-Nagy, B. Gyorffy, K. Chen and J. J. Tyson (1998a). Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M, and metaphase/anaphase transitions. Biophys. Chem. 72, 185–200.

    Article  Google Scholar 

  • Novak, B., A. Csikasz-Nagy, B. Gyorffy, K. Chen and J. J. Tyson (1998b). Model scenarios for evolution of the eukaryotic cell cycle. Philos. Trans. R. Soc. Lond. Ser. B 353, 2063–2076.

    Article  Google Scholar 

  • Okayama, H., A. Nagata, S. Jinno and H. Murakami (1996). Cell cycle control in fission yeast and mammals: identification of new regulatory mechanisms. Adv. Cancer Res. 69, 17–62.

    Article  Google Scholar 

  • O’Leary, F., J. Byrne and L. Cleary (1995). Long-term structural remodeling in Aplysia sensory neurons requires de novo protein synthesis during a critical time period. J. Neurosci. 15, 3519–3525.

    Google Scholar 

  • Omholt, S. W., X. Kefang, O. Andersen and E. Plahte (1998). Description and analysis of switchlike regulatory networks exemplified by a model of cellular iron homeostasis. J. Theor. Biol. 195, 339–350.

    Article  Google Scholar 

  • Plahte, E., T. Mestl and S. W. Omholt (1994). Global analysis of steady points for systems of differential equations with sigmoid interactions. Dyn. Stab. Syst. 9, 275–291.

    MathSciNet  MATH  Google Scholar 

  • Plahte, E., T. Mestl and S. W. Omholt (1998). A methodological basis for description and analysis of systems with complex switch-like interactions. J. Math. Biol. 36, 321–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Polach, K. J. and J. Widom (1996). A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812.

    Article  Google Scholar 

  • Ptashne, M. (1992). A Genetic Switch: Phage λ and Higher Organisms, Cambridge: Cell Press/Blackwell.

    Google Scholar 

  • Reppert, S. M. (1998). A clockwork explosion! Neuron 21, 1–4.

    Article  Google Scholar 

  • Richards, J., H. Bachinger, R. Goodman and R. Brennan (1996). Analysis of the structural properties of cAMP-responsive element binding protein (CREB) and phosphorylated CREB. J. Biol. Chem. 271, 13716–13723.

    Google Scholar 

  • Roberts, R. C., C. D. Mohr and L. Shapiro (1996). Developmental programs in bacteria. Curr. Top. Dev. Biol. 34, 207–257.

    Article  Google Scholar 

  • Robertson, B. D. (1992). Genetic variation in pathogenic bacteria. Trends Genet. 8, 422–427.

    Google Scholar 

  • Rosen, R. (1968). Recent developments in the theory of control and regulation of cellular processes, in International Review of Cytology, G. H. Bourne (Ed.), New York: Academic Press.

    Google Scholar 

  • Rossant, J. and N. Hopkins (1992). Of fin and fur: mutational analysis of vertebrate embryonic development. Genes Dev. 6, 1–13.

    Google Scholar 

  • Sabry, J., T. O’Connor and M. W. Kirschner (1995). Axonal transport of tubulin in Ti1 Pioneer neurons in situ. Neuron 14, 1247–1256.

    Article  Google Scholar 

  • Sassone-Corsi, P. (1995). Transcription factors responsive to cAMP. Ann. Rev. Cell Dev. Biol. 11, 355–377.

    Article  Google Scholar 

  • Sassone-Corsi, P., J. C. Sisson and I. M. Verma (1988). Transcriptional autoregulation of the proto-oncogene fos. Nature 334, 314–319.

    Article  Google Scholar 

  • Scheper, T., D. Klinkenberg, C. Pennartz and J. van Pelt (1999). A mathematical model for the intracellular circadian rhythm generator. J. Neurosci. 19, 40–47.

    Google Scholar 

  • Schnitzer, M. J. and S. M. Block (1997). Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–389.

    Article  Google Scholar 

  • Seo, H., C. Yang, H. Kim and K. Kim (1996). Multiple protein factors interact with the cis-regulatory elements of the proximal promoter in a cell-specific manner and regulate transcription of the dopamine β-hydroxylase gene. J. Neurosci. 16, 4102–4112.

    Google Scholar 

  • Serfling, E. (1989). Autoregulation—a common property of eukaryotic transcription factors? Trends Gen. 5, 131–133.

    Article  Google Scholar 

  • Shapiro, L. and R. Losick (1997). Protein localization and cell fate in bacteria. Science 276, 712–718.

    Article  Google Scholar 

  • Sheng, H., R. D. Fields and P. Nelson (1993). Specific regulation of immediate-early genes by patterned neuronal activity. J. Neurosci. Res. 35, 459–467.

    Article  Google Scholar 

  • Smith, H. (1987a). Oscillations and multiple steady states in a cyclic gene model with repression. J. Math. Biol. 25, 169–190.

    MATH  MathSciNet  Google Scholar 

  • Smith, H. (1987b). Monotone semiflows generated by functional differential equations. J. Diff. Eqs. 66, 420–442.

    Article  MATH  Google Scholar 

  • Smolen, P., D. A. Baxter and J. H. Byrne (1998). Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems. Am. J. Physiol. 274, C531–C542.

    Google Scholar 

  • Smolen, P., D. A. Baxter and J. H. Byrne (1999a). Effects of macromolecular transport and stochastic fluctuations on the dynamics of genetic regulatory systems. Am. J. Physiol., 277, C777–C790.

    Google Scholar 

  • Smolen, P., D. A. Baxter and J. H. Byrne (1999b). Modeling clarifies the role of delays and feedback in circadian oscillators. Soc. Neurosci. Abstr., 25, 867.

    Google Scholar 

  • Snoussi, E. H. and R. Thomas (1993). Logical identification of all steady states: The concept of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991.

    Article  MATH  Google Scholar 

  • Somogyi, R. and C. Sniegoski (1996). Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity 1, 45–63.

    MathSciNet  Google Scholar 

  • Somogyi, R. and C. Sniegoski (1997). The gene expression matrix: towards the extraction of genetic network architectures, Proceedings of the Second World Congress of Nonlinear Analysis, Elsevier Science.

  • Spiro, P. A., J. Parkinson and H. Othmer (1997). A model of excitation and inhibition in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 94, 7263–7268.

    Article  Google Scholar 

  • Stehle, J. H., N. Foulkes, C. Molina, V. Simonneaux, P. Pevet and P. Sassone-Corsi (1993). Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 365, 314–320.

    Article  Google Scholar 

  • Thayer, M. J., S. J. Tapscott, R. L. Davis, W. E. Wright, A. B. Lassar and H. Weintraub (1989). Positive autoregulation of the myogenic determination gene MyoD1. Cell 58, 241–248.

    Article  Google Scholar 

  • Thomas, R. (1994). The role of feedback circuits: positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix. Ber. Bunsenges. Phys. Chem. 98, 1148–1151.

    Google Scholar 

  • Thomas, R. and R. d’Ari (1990). Biological Feedback, Boca Raton, FL: CRC Press.

    MATH  Google Scholar 

  • Thomas, R., D. Thieffry and M. Kauffman (1995). Dynamical behaviour of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276.

    Article  MATH  Google Scholar 

  • Tomita, M. et al. (1999). E-CELL: a software environment for whole-cell simulation. Bioinformatics 15, 72–84.

    Article  Google Scholar 

  • Tully, T., T. Preat, S. Boynton and M. Del Vecchio (1994). Genetic dissection of consolidated memory in Drosophila melanogaster. Cell 79, 35–47.

    Article  Google Scholar 

  • Tyson, J. and H. G. Othmer (1978). The dynamics of feedback control circuits in biochemical pathways. Prog. Theor. Biol. 5, 2–62.

    Google Scholar 

  • Vandien, S. J. and J. D. Keasling (1998). A dynamic model of the E. coli phosphatestarvation response. J. Theor. Biol. 190, 37–49.

    Article  Google Scholar 

  • Von Heijne, G., C. Blomberg and H. Liljenstrom (1987). Theoretical modeling of protein synthesis. J. Theor. Biol. 125, 1–4.

    Google Scholar 

  • Walker, W., L. Fucci and J. Habener (1995). Expression of the gene encoding transcription factor CREB: regulation by follicle-stimulating hormone-induced cAMP signaling in primary rat sertoli cells. Endocrinology 136, 3534–3545.

    Article  Google Scholar 

  • Wen, X. L., S. Fuhrman, G. Michaels, D. Carr, S. Smith, J. Barker and R. Somogyi (1998). Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA 95, 334–339.

    Article  Google Scholar 

  • Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos, Heidelberg: Springer-Verlag.

    MATH  Google Scholar 

  • Winzeler, E. A. et al. (1998). Direct allelic variation scanning of the entire yeast genome. Science 281, 1194–1197.

    Article  Google Scholar 

  • Wolf, D. M. and F. H. Eeckman (1998). On the relationship between genomic regulatory element organization and gene regulatory dynamics. J. Theor. Biol. 195, 167–186.

    Article  Google Scholar 

  • Wong, P., S. Gladney and J. D. Keasling (1997). A mathematical model of the lac operon-inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotech. Prog. 13, 132–143.

    Article  Google Scholar 

  • Yagil, G. and E. Yagil (1971). On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J. 11, 11–27.

    Article  Google Scholar 

  • Yin, J., M. Del Vecchio, H. Zhou and T. Tully (1995). CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115.

    Article  Google Scholar 

  • Yin, J. and T. Tully (1996). CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264–267.

    Article  Google Scholar 

  • Yisraeli, J. K., S. Sokol and D. A. Melton (1990). A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. Development 108, 289–298.

    Google Scholar 

  • Yuh, C. H., H. Bolouri and E. H. Davidson (1998). Genomic cis-regulatory logic, experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902.

    Article  Google Scholar 

  • Zimmerman, S. and A. P. Minton (1993). Macromolecular crowding: biochemical, biophysical, and physiological consequences. Ann. Rev. Biophys. Biomol. Struct. 22, 27–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Byrne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolen, P., Baxter, D.A. & Byrne, J.H. Modeling transcriptional control in gene networks—methods, recent results, and future directions. Bull. Math. Biol. 62, 247–292 (2000). https://doi.org/10.1006/bulm.1999.0155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0155

Keywords

Navigation