Skip to main content
Log in

Pattern formation of scale cells in lepidoptera by differential origin-dependent cell adhesion

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a model for the formation of parallel rows of scale cells in the developing adult wing of moths and butterflies. Precursors of scale cells differentiate throughout each epithelial monolayer and migrate into rows that are roughly parallel to the body axis. Grafting experiments have revealed what appears to be a gradient of adhesivity along the wing. What is more, cell adhesivity character is maintained after grafting. Thus we suggest that it is a cell’s location prior to migration that determines its interactions during migration. We use nonlinear bifurcation analysis to show that differential origin-dependent cell adhesion can result in the stabilization of rows over spots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bard, J. B. L. (1981). Atitle model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol 93, 363–385.

    Article  MathSciNet  Google Scholar 

  • Campos-Ortega, J. A. (1988). Cellular interaction during early neurogenesis of Drosophila melanogaster. Trends Neurosci 11, 400–405.

    Article  Google Scholar 

  • Campuzano, S. and J. Modolell (1992). Patterning of the Drosophila nervous system: the achaete-scute gene complex. Trends Genetics 8, 202–208.

    Google Scholar 

  • Collier, J. R., N. A. M. Monk, P. K. Maini and J. H. Lewis (1996). Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signalling. J. Theor. Biol. 183, 429–446.

    Article  Google Scholar 

  • Doe, C. Q. and C. S. Goodman (1985). Early events in insect neurogenesis, II The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev. Biol. 111, 206–219.

    Article  Google Scholar 

  • Ermentrout, B. (1991). Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc. R. Soc. Lond. Ser. A 434, 413–417.

    MATH  MathSciNet  Google Scholar 

  • Fife, P. (1979). Mathematical Aspects of Reacting and Diffusing Systems Lecture Notes in Biomathematics, 28, Springer-Verlag.

  • Heitzler, P. and P. Simpson (1991). The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083–1093.

    Article  Google Scholar 

  • Held, L. I. (1991). Bristle patterning in Drosophila. Bioessays 13, 633–640.

    Article  Google Scholar 

  • Held, L. I. (1993). Models for Embryonic Periodicity, Basel: Karger.

    Google Scholar 

  • Honda, H., M. Tanemura and A. Yoshida (1990). Estimation of neuroblast numbers in insect neurogenesis using the lateral inhibition hypothesis of cell differentiation. Development 110, 1349–1352.

    Google Scholar 

  • Jordan, D. W. and P. Smith (1987). Nonlinear Ordinary Differential Equations, Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Kadmon, G., A. Kowitz, P. Altevogt and M. Schachner (1990). The neural cell adhesion molecule N-CAM enhances L1-dependent cell—cell interactions. J. Cell Biol. 110, 193–208.

    Article  Google Scholar 

  • Locke, M. and P. Huie (1981). Epidermal feet in insect morphogenesis. Nature 293, 733–735.

    Article  Google Scholar 

  • Lyons, M. J. and L. G. Harrison (1991). Stripes and spots and isolated structures: the pattern-forming abilities of diverse non-linearities in reaction-diffusion mechanisms, NWPMB workshop, Vancouver B.C.

  • Lyons, M. J. and L. G. Harrison (1992). Stripe selection: an intrinsic property of some pattern-forming models with nonlinear dynamics. Dev. Dyn. 195, 201–215.

    Google Scholar 

  • Kondo, S. and R. Asai (1995). A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768.

    Article  Google Scholar 

  • Kopell, N. and L. N. Howard (1973). Horizontal bands in the Belousov reaction. Science 180, 1171–1173.

    Google Scholar 

  • Maini, P. K. and J. D. Murray (1988). A nonlinear analysis of a mechanical model for biological patternformation. SIAM. J. Appl. Math. 48, 1064–1072.

    Article  MathSciNet  MATH  Google Scholar 

  • Mauro, V. P., L. A. Krushel, B. A. Cunningham and G. M. Edelman (1992). Homophilic and heterophilic binding activities of Nr-CAM, a nervous system cell adhesion molecule. J. Cell Biol. 119, 191–202.

    Article  Google Scholar 

  • Murray, J. D. (1980). Lecture Notes in Biomathematics, Berlin, Heidelberg, New York: Springer, pp. 360–399.

    Google Scholar 

  • Murray, J. D. (1981). A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161–199.

    Article  Google Scholar 

  • Murray, J. D. (1993). Mathematical Biology, Springer-Verlag.

  • Murray, J. D., D. C. Deeming and M. W. J. Ferguson (1990). Size dependent pigmentation pattern formation in embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism. Proc. R. Soc. Lond. Ser. B 239, 279–293.

    Article  Google Scholar 

  • Murray, J. D and M. R. Myerscough (1991). Pigmentation pattern formation on snakes. J. Theor. Biol. 149, 339–360.

    Google Scholar 

  • Nagorcka, B. N. and J. R. Mooney (1992). From stripes to spots: prepatterns which can be produced in the skin by a reaction-diffusion system. IMA J. Math. Appl. Biol. Med. 9, 249–267.

    MATH  Google Scholar 

  • Nardi, J. B. (1988). Establishment of a two-dimensional neural network in an insect wing. Current Issues in Neural Regeneration Research, Liss A.R., 127–136.

  • Nardi, J. B. (1992). Dynamic expression of a cell surface protein during rearrangement of epithelial cells in the Manduca wing monolayer. Dev. Biol. 152, 161–171.

    Article  Google Scholar 

  • Nardi, J. B. (1994). Rearrangement of epithelial cell types in an insect wing monolayer is accompanied by differential expression of a cell surface protein. Dev. Dyn. 199, 315–325.

    Google Scholar 

  • Nardi, J. B. and S. M. Magee-Adams (1986). Formation of scale spacing patterns in a moth wing. I. Epithelial feet may mediate cell rearrangement. Dev. Biol. 116, 278–290.

    Article  Google Scholar 

  • Nijhout, H. F. (1980). Ontogeny of the color pattern on the wing of Precis coenia (Lepidoptera: Nymphalidae). Dev. Biol. 80, 275–288.

    Google Scholar 

  • Oster, G. F. and J. D. Murray (1989). Pattern formation models and development. Zool. 251, 186–202.

    Google Scholar 

  • Sekimura, T. and A. Yoshida (1990). A model for cellular pattern formation of scales in a butterfly wing. Forma 5, 73–82.

    Google Scholar 

  • Simpson, P. (1990). Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development 109, 509–519.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. Ser. B 237, 37–72.

    Google Scholar 

  • Varea, C., J. L. Aragón and R. A. Barrio (1997). Confined Turing patterns in growing systems. Phys. Rev. E56, 1250–1253.

    Google Scholar 

  • Walgraef, D., G. G. Dewel and P. Borckmans (1982). Nonequilibrium phase transitions and chemical instability. Adv. Chem. Phys. XLIX, 311–355.

    Google Scholar 

  • Yoshida, A. and K. Aoki (1989). Scale arrangement pattern in a lepidopteran wing. I. Periodic cellular pattern in pupal wing of Pieris rapae. Dev. Growth Differ. 31, 601–609.

    Article  Google Scholar 

  • Yoshida, A. (1993). The spatial pattern of the cell distribution and the cell number ratio determined by competition and lateral inhibition in the butterfly wing. Forma 8, 203–210.

    Google Scholar 

  • Zhu, M. and J. D. Murray (1995a). Parameter domains for generating spatial pattern: a comparison of reaction-diffusion and cell-chemotaxis models. Int. J. Bifurcation Chaos 5, 1503–1524.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, M. and J. D. Murray (1995b). Parameter domains for spots and stripes in mechanical models for biological pattern formation. J. Nonlinear Sci. 5, 317–336.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekimura, T., Zhu, M., Cook, J. et al. Pattern formation of scale cells in lepidoptera by differential origin-dependent cell adhesion. Bull. Math. Biol. 61, 807–828 (1999). https://doi.org/10.1006/bulm.1998.0062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1998.0062

Keywords

Navigation