Skip to main content
  • Book
  • © 2016

Charge and Spin Transport in Disordered Graphene-Based Materials

Authors:

  • Nominated as an outstanding Ph.D. thesis by the Universitat Autònoma de Barcelona, Spain
  • A self-contained treatment with detailed (tutorial style) description of original and innovative quantum transport methodologies
  • Clearly explains predictive modeling for complex forms of two-dimensional materials(graphene and beyond)
  • Useful as a guide to experimentalists and engineers evaluating fundamental properties of graphene-based materials and devices
  • Provides introduction to the essentials of electronic and transport properties in disordered graphene
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (6 chapters)

  1. Front Matter

    Pages i-xvi
  2. Introduction

    • Dinh Van Tuan
    Pages 1-4
  3. Transport in Disordered Graphene

    • Dinh Van Tuan
    Pages 55-113
  4. Spin Transport in Disordered Graphene

    • Dinh Van Tuan
    Pages 115-139
  5. Conclusions

    • Dinh Van Tuan
    Pages 141-142
  6. Back Matter

    Pages 143-153

About this book

This thesis presents an in-depth theoretical analysis of charge and spin transport properties in complex forms of disordered graphene. It relies on innovative real space computational methods of the time-dependent spreading of electronic wave packets. First a universal scaling law of the elastic mean free path versus the average grain size is predicted for polycrystalline morphologies, and charge mobilities of up to 300.000 cm2/V.s are determined for 1 micron grain size, while amorphous graphene membranes are shown to behave as Anderson insulators. An unprecedented spin relaxation mechanism, unique to graphene and driven by spin/pseudospin entanglement is then reported in the presence of weak spin-orbit interaction (gold ad-atom impurities) together with the prediction of a crossover from a quantum spin Hall Effect to spin Hall effect (for thallium ad-atoms), depending on the degree of surface ad-atom segregation and the resulting island diameter.

Authors and Affiliations

  • and Nanotechnology, Catalan Institute of Nanoscience, Barcelona, Spain

    Dinh Van Tuan

About the author

Dinh Van Tuan studied theoretical Physics at Ho Chi Minh City University of Science and obtained a masters degree in Theoretical and Mathematical Physics. He then pursued his Ph.D. work at ICN2 from September 2011 till September 2014 during which he developed the first spin dynamics theoretical studies on weakly disordered graphene. Since then, he has been working as post doctorate researcher within the Graphene Flagship project (graphene-flagship.eu/), in the group of ICREA Prof. Stephan Roche. Dinh Van Tuan is in charge of the development of new methodologies to scrutinize the physics of the spin Hall effect in graphene based materials.

Bibliographic Information

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access