Skip to main content
Log in

Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Lee, E. Ramirez-Ruiz and D. Page, Astrophys. J. 632, 421 (2005).

    Article  ADS  Google Scholar 

  2. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  3. M. C. Begelman, R. D. Blandford and M. J. Rees, Rev. Mod. Phys. 56, 255 (1984).

    Article  ADS  Google Scholar 

  4. B. Kozlovsky, R. J. Murphy and G. H. Share, Astrophys. J. 604, 892 (2004).

    Article  ADS  Google Scholar 

  5. E. Tandberg-Hanssen and A. Gordon Emslie, The Physics of Solar Flares Cambridge University Press, (Cambridge, 1988).

    Google Scholar 

  6. F. B. Rizzato, J. Plasma Phys. 40, 289 (1988).

    Article  ADS  Google Scholar 

  7. R. Berezhiani, Astrophys. Space Sci. 189, 213 (1992).

    Article  ADS  Google Scholar 

  8. S. I. Popel, Phys. Plasmas 2, 716 (1995).

    Article  ADS  Google Scholar 

  9. A. Esfandyari-Kalejahi, M. Akbari-Moghanjoughi and B. Haddadpour-Kjiaban, Phys. Plasmas 16, 102302 (2009).

    Article  ADS  Google Scholar 

  10. E. Nebbat and R. Annou, Phys. Plasmas 19, 093705 (2012).

    Article  ADS  Google Scholar 

  11. T. Tajima and K. Shibata, Plasma Astrophysics New York (Addison-Wesley, 1997).

    Google Scholar 

  12. S. Weinberg, Gravitation and Cosmology New York (Wiley, 1972).

    Google Scholar 

  13. J. C. Higdon, R. E. Lingenfelter and R. E. Rothschild, Astrophys. J. 698, 350 (2009).

    Article  ADS  Google Scholar 

  14. P. K. Shukla and M. Marklund, Phys. Scr. T113, 36 (2004).

    Article  ADS  Google Scholar 

  15. P. K. Shukla, S. Jammalamadaka and L. Senflo, Astron. Astrophys. L21, 317 (1997).

    Google Scholar 

  16. S. H. Cho, H. J. Lee and Y. S. Kim, Phys. Rev. E 61, 4357 2000.

    Article  ADS  Google Scholar 

  17. S. Ghosh, S. Sarkar, M. Khan and M. R. Gupta, Phys. Plasmas 7, 3594 (2000).

    Article  ADS  Google Scholar 

  18. S. Ghosh, S. Sarkar, M. Khan and M. R. Gupta, Phys. Lett. A 274, 162 (2000).

    Article  ADS  Google Scholar 

  19. S. Ghosh, Eur. Phys. J. Appl. Phys. 33, 199 (2006).

    Article  ADS  Google Scholar 

  20. S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008).

    Article  ADS  MATH  Google Scholar 

  21. A. Esfandyari-Kalejahi, M. Afsari-Ghazi, K. Noori and S. Irani, Phys. Plasmas 19, 082308 (2012).

    Article  ADS  Google Scholar 

  22. N. Jehan, W. Masood and A. M. Mirza, Phys. Scripta 80, 035506 (2009).

    Article  ADS  Google Scholar 

  23. M. M. Lin and W. S. Duan, Chaos, Solitons and Fractals 23, 929 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. S. K. EI-Labany, F. M. Safi and W. M. Moslem, Planetary and Space Sciences 55, 2192 (2007).

    Article  ADS  Google Scholar 

  25. S. Maitra, Phys. Plasmas 19, 013701 (2012).

    Article  ADS  Google Scholar 

  26. J. Z. Duan, C. L. Wang, J. R. Zhang, S.-Q. Ma, X.-R. Hong, J. Sun, W.-S. Duan and Lei Yang, Phys. Plasmas 19, 083703 (2012).

    Article  ADS  Google Scholar 

  27. P. K. Shukla and A. A. Mamun, Introduction to dusty plasma IOP published, 2002.

    Book  Google Scholar 

  28. W. S. Duan, H. J. Yang, Y. R. Shi and K. P. Lü, Phys. Lett. A 361, 368 (2007).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HY., Zhang, KB. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution. Journal of the Korean Physical Society 64, 1677–1682 (2014). https://doi.org/10.3938/jkps.64.1677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1677

PACS numbers

Keywords

Navigation