Skip to main content

Advertisement

Log in

High intrafamilial variability in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy: A case study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Introduction: Autoimmune polyendocrinopathy-candidiasis-ectodermal-dystrophy syndrome (APECED) is a monogenic disease whose phenotype may reveal wide heterogeneity. The reasons of this variability still remain obscure. Patients and methods: Two APECED siblings with identical genotype and extremely different phenotype were compared with regard to exposure to infectious triggers, autoantibodies’ profile, mechanisms of peripheral tolerance, and human leukocyte antigen (HLA) haplotype. The following infectious markers were evaluated: rubella, Epstein Barr virus, cytomegalovirus, toxoplasma, varicella zoster virus, parvovirus B19, herpes simplex virus, and parainfluenza virus. APECED-related autoantibodies were detected by indirect immunofluorescence or complement fixation or enzyme-linked immunosorbent assay or radioimmunoassay. Resistance to Fas-induced apoptosis was evaluated on peripheral blood mononuclear cells (PBMC) activated with phytohemoagglutinin, the number of TCD4+CD25+ regulatory cells (Treg) was evaluated through flow-cytometry and natural killer (NK) activity through Wallac method. Perforin (PRF1) was amplified by PCR and sequenced. Results: No difference was observed between the siblings in common infectious triggers, extent of Fas-induced apoptosis, NK-cell activity and PRF1 sequence, the number of Tregs and HLA haplotypes. Conclusion: Although APECED is a monogenic disease, its expressivity may be extremely different even in the same family. This variability cannot be explained by common triggering infectious agents or functional alterations of mechanisms governing peripheral tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Betterle C, Greggio NA, Volpato M. Autoimmune polyglandular syndrome type 1. J Clin Endocr Metab 1998, 83: 1049–55.

    Article  CAS  PubMed  Google Scholar 

  2. Mathis D, Benoist C. Aire. Annu Rev Immunol 2009, 27: 287–312.

    Article  CAS  PubMed  Google Scholar 

  3. Gylling M, Tuomi T, Björses P, et al. ss-cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab 2000, 85: 4434–40.

    CAS  PubMed  Google Scholar 

  4. Halonen M, Eskelin P, Myhre AG, et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J Clin Endocrinol Metab 2002, 87: 2568–74.

    Article  CAS  PubMed  Google Scholar 

  5. Kekäläinen E, Tuovinen H, Joensuu J, et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol 2007, 178: 1208–15.

    PubMed  Google Scholar 

  6. Capalbo D, Elefante A, Spagnuolo MI, et al. Posterior reversible encephalopathy syndrome in a child during an accelerated phase of a severe APECED phenotype due to an uncommon mutation of AIRE. Clin Endocrinol (Oxf) 2008, 69: 511–3.

    Article  Google Scholar 

  7. Stolarski B, Pronicka E, Korniszewski L, et al. Molecular background of polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome in a Polish population: novel AIRE mutations and an estimate of disease prevalence. Clin Genet 2006, 70: 348–54.

    Article  CAS  PubMed  Google Scholar 

  8. Fiore M, Pera C, Delfino L, Scotese I, Ferrara GB, Pignata C. DNA typing of DQ and DR alleles in IgA-deficient subjects. Eur J Immunogenet 1995, 22: 403–11.

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka H, Perez MS, Powell M, et al. Steroid 21-hydroxylase autoantibodies: measurements with a new immunoprecipitation assay. J Clin Endocrinol Metab 1997, 82: 1440–6.

    CAS  PubMed  Google Scholar 

  10. Chen S, Sawicka J, Betterle C, et al. Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison’s disease, and premature ovarian failure. J Clin Endocrinol Metab 1996, 81: 1871–6.

    CAS  PubMed  Google Scholar 

  11. Dal Pra C, Chen S, Betterle C, et al. Autoantibodies to human tryptophan hydroxylase and aromatic L-amino acid decarboxylase. Eur J Endocrinol 2004, 150: 313–21.

    Article  Google Scholar 

  12. DeFranco S, Bonissoni S, Cerutti F, et al. Defective function of Fas in patients with type 1 diabetes associated with other autoimmune diseases. Diabetes 2001, 50: 483–8.

    Article  CAS  PubMed  Google Scholar 

  13. Pignata C, Fiore M, De Filippo S, et al. Apoptosis as a mechanism of peripheral blood mononuclear cell death following measles and varicella-zoster virus infections in children. Ped Res 1998, 43: 77–83.

    Article  CAS  Google Scholar 

  14. Pignata C, Troncone R, Monaco G, et al. Impaired suppressor activity in children affected by coeliac disease. Gut 1985, 26: 285–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab 2006, 91: 2843–50.

    Article  CAS  PubMed  Google Scholar 

  16. Wolff AS, Erichsen MM, Meager A, et al. Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J Clin Endocrinol Metab 2007, 92: 595–603.

    Article  CAS  PubMed  Google Scholar 

  17. Ming JE, Muenke M. Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am J Hum Genet 2002, 71: 1017–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. von Herrat MG, Dockter J, Oldstone MB. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1994, 1: 231–42.

    Article  Google Scholar 

  19. Panoutsakopoulou V, Sanchirico ME, Huster KM, et al. Analysis of the relationship between viral infection and autoimmune disease. Immunity 2001, 15: 137–47.

    Article  CAS  PubMed  Google Scholar 

  20. Chen HD, Fraire AE, Joris I, Welsh RM, Selin LK. Specific history of heterologous virus infections determines anti-viral immunity and immunopathology in the lung. Am J Pathol 2003, 163: 1341–55.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Horwitz MS, Bradley LM, Harbertson J, et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998, 4: 781–5.

    Article  CAS  PubMed  Google Scholar 

  22. Mena I, Fischer C, Gebhard JR, et al. Coxsackievirus infection of the pancreas: evaluation of receptor expression, pathogenesis, and immunopathology. Virology 2000, 271: 276–88.

    Article  CAS  PubMed  Google Scholar 

  23. Carl PL, Temple BR, Cohen PL. Most nuclear systemic autoantigens are extremely disordered proteins: implications for the etiology of systemic autoimmunity. Arthritis Res Ther 2005, 7: 1360–74.

    Article  Google Scholar 

  24. Pender MP. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 2003, 24: 584–8.

    Article  CAS  PubMed  Google Scholar 

  25. Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2002, 2: 11–9.

    Article  CAS  PubMed  Google Scholar 

  26. Mathis D, Benoist C. Back to central tolerance. Immunity 2004, 20: 509–16.

    Article  CAS  PubMed  Google Scholar 

  27. Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005, 435: 590–7.

    Article  CAS  PubMed  Google Scholar 

  28. Orilieri E, Cappellano G, Clementi R, et al. Variations of the perforin gene in patients with type 1 diabetes. Diabetes 2008, 57: 1078–83.

    Article  CAS  PubMed  Google Scholar 

  29. Cappellano G, Orilieri E, Comi C, et al. Variations of the perforin gene in patients with multiple sclerosis. Genes Immun 2008, 9: 438–44.

    Article  CAS  PubMed  Google Scholar 

  30. Kuroda N, Mitani T, Takeda N, et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J Immunol 2005, 174: 1862–70.

    CAS  PubMed  Google Scholar 

  31. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol 2003, 4: 350–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pignata MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capalbo, D., Fusco, A., Aloj, G. et al. High intrafamilial variability in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy: A case study. J Endocrinol Invest 35, 77–81 (2012). https://doi.org/10.3275/8055

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3275/8055

Key-words

Navigation