Skip to main content
Log in

Quantum Computers Based on Cold Atoms\({}^{\mathbf{\#}}\)

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A brief survey of present-day achievements in quantum informatics is presented. Advantages of quantum computers are shown by an example of simplest quantum algorithms. Application of ultracold atoms for the implementation of quantum processors is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. F. Arute, K. Arya, R. Babbush, et al., ‘‘Quantum supremacy using a programmable superconducting processor,’’ Nature 574, 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5

    Article  ADS  Google Scholar 

  2. IBM Quantum Experience. https://www.ibm.com/quantum-computing/. Cited June 29, 2020.

  3. Yu. I. Manin, Computable and Uncomputable (Sovetskoye Radio, Moscow, 1980).

    Google Scholar 

  4. R. P. Feynman, ‘‘Simulating physics with computers,’’ Int. J. Theor. Phys. 21, 467–488 (1982). https://doi.org/10.1007/BF02650179

    Article  MathSciNet  Google Scholar 

  5. P. W. Shor, ‘‘Algorithms for quantum computation: discrete logarithms and factoring,’’ in Proc. 35th Annu. Symp. Foundations of Computer Science (SFCS 94), Washington, 1994 (IEEE Computer Society, Washington, 1994), p. 124. https://doi.org/10.1109/SFCS.1994.365700

  6. M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, New York, 2000).

    MATH  Google Scholar 

  7. A. Einstein, B. Podolsky, and N. Rosen, ‘‘Can quantum-mechanical description of physical reality be considered complete?,’’ Phys. Rev. 47, 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  ADS  MATH  Google Scholar 

  8. D. Deutsch, ‘‘Quantum theory, the Church–Turing principle and the universal quantum computer,’’ Proc. R. Soc. Lond. A. 400 (1818), 97–117 (1985). https://doi.org/10.1098/rspa.1985.0070

  9. I. N. Ashkarin, I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, and I. I. Ryabtsev, ‘‘Scheme of a hydrogen-molecule quantum simulator based on two ultracold rubidium atoms,’’ Quantum Electron. 49, 449–454 (2019). https://doi.org/10.1070/QEL17002

    Article  ADS  Google Scholar 

  10. D. P. DiVincenzo, ‘‘Quantum computation,’’ Science 270, 255–261 (1995). https://doi.org/10.1126/science.270.5234.255

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. R. Barends, C. M. Quintana, A. G. Petukhov, et al., ‘‘Diabatic gates for frequency-tunable superconducting qubits,’’ Phys. Rev. Lett. 123, 210501 (2019). https://doi.org/10.1103/PhysRevLett.123.210501

    Article  ADS  Google Scholar 

  12. J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland, ‘‘High-fidelity universal gate set for 9Be+ ion qubits,’’ Phys. Rev. Lett. 117, 060505 (2016). https://doi.org/10.1103/PhysRevLett.117.060505

    Article  ADS  Google Scholar 

  13. D. Jaksh, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, ‘‘Fast quantum gates for neutral atoms,’’ Phys. Rev. Lett. 85, 2208–2211 (2000). https://doi.org/10.1103/PhysRevLett.85.2208

    Article  ADS  Google Scholar 

  14. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, ‘‘Experimental observation of optically trapped atoms,’’ Phys. Rev. Lett. 57, 314–317 (1986). https://doi.org/10.1103/PhysRevLett.57.314

    Article  ADS  Google Scholar 

  15. R. Grimm, M. Weidemüller, and Yu. B. Ovchinnikov, ‘‘Optical dipole traps for neutral atoms,’’ Adv. At., Mol., Opt. Phys. 42, 95–170 (2000). https://doi.org/10.1016/S1049-250X(08)60186-X

    Article  ADS  Google Scholar 

  16. F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, ‘‘Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,’’ Phys. Rev. X 4, 021034 (2014). https://doi.org/10.1103/PhysRevX.4.021034

    Article  Google Scholar 

  17. M. Schlosser, S. Tichelmann, J. Kruse, and G. Birkl, ‘‘Scalable architecture for quantum information processing with atoms in optical micro-structures,’’ Quantum Inf. Process. 10, 907–924 (2011). https://doi.org/10.1007/s11128-011-0297-z

    Article  Google Scholar 

  18. Y. Wang, S. Shevate, T. M. Wintermantel, M. Morgado, G. Lochead, and S. Whitlock, ‘‘Preparation of hundreds of microscopic atomic ensembles in optical tweezer arrays,’’ npj Quantum Inf. 6, 54 (2020). https://doi.org/10.1038/s41534-020-0285-1

  19. C. J. Picken, R. Legaie, and J. D. Pritchard, ‘‘Single atom imaging with an sCMOS camera,’’ Appl. Phys. Lett. 111, 164102 (2017). https://doi.org/10.1063/1.5003304

    Article  ADS  Google Scholar 

  20. N. Schlosser, G. Reymond, and P. Grangier, ‘‘Collisional blockade in microscopic optical dipole traps,’’ Phys. Rev. Lett. 89, 023005 (2002). https://doi.org/10.1103/PhysRevLett.89.023005

    Article  ADS  Google Scholar 

  21. D. Barredo, S. de Léséleuc, V. Lienhard, Th. Lahaye, and A. Browaeys, ‘‘An atom-by-atom assembler of defect-free arbitrary 2d atomic arrays,’’ Science 354, 1021–1023 (2016). https://doi.org/10.1126/science.aah3778

    Article  ADS  Google Scholar 

  22. S. R. Samoylenko, A. V. Lisitsin, D. Schepanovich, I. B. Bobrov, S. S. Straupe, and S. P. Kulik, ‘‘Single atom movement with dynamic holographic optical tweezers,’’ Laser Phys. Lett. 17, 025203 (2020). https://doi.org/10.1088/1612-202X/ab6729

    Article  ADS  Google Scholar 

  23. T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, ‘‘Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array,’’ Phys. Rev. Lett. 123, 230501 (2019). https://doi.org/10.1103/PhysRevLett.123.230501

    Article  ADS  Google Scholar 

  24. M. Saffman, T. G. Walker, and K. Mølmer, ‘‘Quantum information with Rydberg atoms,’’ Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  Google Scholar 

  25. M. Saffman, ‘‘Quantum computing with atomic qubits and Rydberg interactions: progress and challenges,’’ J. Phys. B: At., Mol. Opt. Phys. 49, 202001 (2016). https://doi.org/10.1088/0953-4075/49/20/202001

    Article  ADS  Google Scholar 

  26. L. Henriet, L. Beguin, A. Signoles, Th. Lahaye, A. Browaeys, G.-O. Reymond, and Ch. Jurczak, ‘‘Quantum computing with neutral atoms,’’ Quant. Phys. Cornell Univers., 2020. arXiv:2006.12326 [quant-ph]

  27. I. I. Ryabtsev, I. I. Beterov, D. B. Tret’yakov, V. M. Èntin, and E. A. Yakshina, ‘‘Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information,’’ Phys.-Usp. 59, 196–208 (2016). https://doi.org/10.3367/UFNe.0186.201602k.0206

    Article  Google Scholar 

  28. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, ‘‘Demonstration of a neutral atom controlled-NOT quantum gate,’’ Phys. Rev. Lett. 104, 010503 (2010). https://doi.org/10.1103/PhysRevLett.104.010503

    Article  ADS  Google Scholar 

  29. T. F. Gallagher, Rydberg Atoms (Cambridge Univ. Press, Cambridge, 1994). https://doi.org/10.1017/CBO9780511524530

  30. M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, ‘‘Dipole blockade and quantum information processing in mesoscopic atomic ensembles,’’ Phys. Rev. Lett. 87, 03790 (2001). https://doi.org/10.1103/PhysRevLett.87.037901

    Article  Google Scholar 

  31. H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, ‘‘Parallel implementation of high-fidelity multiqubit gates with neutral atoms,’’ Phys. Rev. Lett. 123, 170503 (2019). https://doi.org/10.1103/PhysRevLett.123.170503

    Article  ADS  Google Scholar 

  32. I. I. Beterov, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, U. Singh, Ya. V. Kudlaev, K. Yu. Mityanin, K. A. Panov, N. V. Al’yanova, and I. I. Ryabtsev, ‘‘Trapping and detection of single rubidium atoms in an optical dipole trap using a long-focus objective lens,’’ Quantum Electron. 50, 543–550 (2020). https://doi.org/10.1070/QEL17336

    Article  ADS  Google Scholar 

  33. I. I. Beterov, M. Saffman, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, S. Bergamini, E. A. Kuznetsova, and I. I. Ryabtsev, ‘‘Two-qubit gates using adiabatic passage of the stark-tuned Förster resonances in Rydberg atoms,’’ Phys. Rev. A 94, 062307 (2016). https://doi.org/10.1103/PhysRevA.94.062307

    Article  ADS  Google Scholar 

  34. I. I. Beterov, G. N. Hamzina, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, and I. I. Ryabtsev, ‘‘Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of Bell states,’’ Phys. Rev. A 97, 032701 (2018). https://doi.org/10.1103/PhysRevA.97.032701

    Article  ADS  Google Scholar 

  35. I. I. Beterov, G. N. Khamzina, D. B. Tret’yakov, V. M. Entin, E. A. Yakshina, and I. I. Ryabtsev, ‘‘Resonant dipole–dipole interaction of Rydberg atoms for realisation of quantum computations,’’ Quantum Electron. 48, 453–459 (2018). https://doi.org/10.1070/QEL16663

    Article  ADS  Google Scholar 

  36. I. I. Beterov, M. Saffman, E. A. Yakshina, V. P. Zhukov, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, C. W. Mansell, C. MacCormick, S. Bergamini, and M. P. Fedoruk, ‘‘Quantum gates in mesoscopic atomic ensembles based on adiabatic passage and Rydberg blockade,’’ Phys. Rev. A 88, 010303 (2013). https://doi.org/10.1103/PhysRevA.88.010303

    Article  ADS  Google Scholar 

  37. I. I. Beterov, M. Saffman, V. P. Zhukov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, C. W. Mansell, C. MacCormick, S. Bergamini, and M. P. Fedoruk, ‘‘Coherent control of mesoscopic atomic ensembles for quantum information,’’ Laser Phys. 24, 074013 (2014). https://doi.org/10.1088/1054-660X/24/7/074013

    Article  ADS  Google Scholar 

  38. D. B. Tretyakov, I. I. Beterov, E. A. Yakshina, V. M. Entin, I. I. Ryabtsev, P. Cheinet, and P. Pillet, ‘‘Observation of the Borromean three-body Förster resonances for three interacting Rb Rydberg atoms,’’ Phys. Rev. Lett. 119, 173402 (2017). https://doi.org/10.1103/PhysRevLett.119.173402

    Article  ADS  Google Scholar 

  39. I. I. Beterov, M. Saffman, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, G. N. Hamzina, and I. I. Ryab- tsev, ‘‘Simulated quantum process tomography of quantum gates with Rydberg superatoms,’’ J. Phys. B. 49, 114007 (2016). https://doi.org/10.1088/0953-4075/49/11/114007

    Article  ADS  Google Scholar 

  40. I. I. Beterov, I. N. Ashkarin, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, P. Cheinet, P. Pillet, and M. Saffman, ‘‘Fast three-qubit Toffoli quantum gate based on three-body Förster resonances in Rydberg atoms,’’ Phys. Rev. A. 98, 042704 (2018). https://doi.org/10.1103/PhysRevA.98.042704

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-52-15010) [the survey of quantum computation principles] and Russian Science Foundation (project no. 18-12-00313) [the survey of physical platforms for the implementation of quantum computers].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Beterov.

Additional information

#Papers of this section are devoted to the anniversary of the Optical Information Technology Department, Novosibirsk State Technical University.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beterov, I. Quantum Computers Based on Cold Atoms\({}^{\mathbf{\#}}\) . Optoelectron.Instrument.Proc. 56, 317–324 (2020). https://doi.org/10.3103/S8756699020040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020040020

Keywords:

Navigation