Skip to main content
Log in

Algorithms and Architecture of the Multirotor Aircraft Trajectory Motion Control System

  • COMPUTATIONAL AND DATA ACQUISITION SYSTEMS
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A control algorithm based on the required differential equations of deviations is proposed to solve the problem of tracing the desired trajectory by target position. The flight path is planned on the basis of the author’s method of calculation of a flat trajectory consisting of oriented segments of straight lines connected by Euler spirals. The software and hardware complex of the automatic flight control system is presented. The operability of the control system in the presence of measurement noises and external disturbances is confirmed by the results of experiments to control the flight of a quadcopter indoors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. M. Kuckelhaus, D. Niezgoda, and S. Endriß, Unmanned Aerial Vehicles in Logistics (DHL, Troisdorf, 2014).

  2. V. Duggal, M. Sukhwani, K. Bipin, G. S. Reddy, and K. M. Krishna, ‘‘Plantation monitoring and yield estimation using autonomous quadcopter for precision agriculture,’’ in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp. 5121–5127. https://doi.org/10.1109/ICRA.2016.7487716

  3. P. Ćwiakała, R. Kocierz, E. Puniach, M. Nedzka, K. Mamczarz, W. Niewiem, and P. Wiacek, ‘‘Assessment of the possibility of using unmanned aerial vehicles (uavs) for the documentation of hiking trails in alpine areas,’’ Sensors 18, 81 (2017). https://doi.org/10.3390/s18010081

  4. Ch. Zhang and J. M. Kovacs, ‘‘The application of small unmanned aerial systems for precision agriculture: a review,’’ Precis. Agric. 13, 693–712 (2012). https://doi.org/10.1007/s11119-012-9274-5

    Article  Google Scholar 

  5. O. Brock and O. Khatib, ‘‘Real-time replanning in high-dimensional configuration spaces using sets of homotopic paths,’’ in Proc Int. Conf. on Robotics and Automation (ICRA), San Francisco, 2000, pp. 550–555. https://doi.org/10.1109/ROBOT.2000.844111

  6. J. S. Pershina, S. Ya. Kazdorf, and A. V. Lopota, ‘‘Methods of mobile robot visual navigation and environment mapping,’’ Optoelectron., Instrum. Data Process. 55, 181–188 (2019). https://doi.org/10.3103/S8756699019020109

    Article  ADS  Google Scholar 

  7. S. Thrun, M. Montemerlo, H. Dahlkamp, et al., ‘‘Stanley: The robot that won the DARPA Grand Challenge,’’ J. Field Rob. 23, 661–692 (2006). https://doi.org/10.1002/rob.20147

    Article  Google Scholar 

  8. J. Connors and G. Elkaim, ‘‘Analysis of a spline based, obstacle avoiding path planning algorithm,’’ in Proc. IEEE 65th Vehicular Technology Conf. (VTC2007-Spring), Dublin, 2007), pp. 2565–2569. https://doi.org/10.1109/VETECS.2007.528

  9. J. Kim, M.-S. Kang, and S. Park, ‘‘Accurate modeling and robust hovering control for a quad–rotor vtol aircraft,’’ J. Intell. Rob. Syst. 57, 9–26 (2010). https://doi.org/10.1007/s10846-009-9369-z

    Article  MATH  Google Scholar 

  10. S. A. Belokon’, Yu. N. Zolotukhin, K. Yu. Kotov, A. S. Mal’tsev, A. A. Nesterov, V. Ya. Pivkin, M. A. Sobolev, M. N. Filippov, and A. P. Yan, ‘‘Using the Kalman filter in the quadrotor vehicle trajectory tracking system,’’ Optoelectron., Instrum. Data Process. 49, 536–545 (2013). https://doi.org/10.3103/S8756699013060022

    Article  Google Scholar 

  11. S. A. Belokon’, Yu. N. Zolotukhin, and A. A. Nesterov, ‘‘Aircraft path planning with the use of smooth trajectories,’’ Optoelectron., Instrum. Data Process. 53, 1–8 (2017). https://doi.org/10.3103/S8756699017010010

    Article  ADS  Google Scholar 

  12. S. A. Belokon’, Yu. N. Zolotukhin, A. S. Mal’tsev, A. A. Nesterov, M. N. Filippov, and A. P. Yan, ‘‘Control of flight parameters of a quadrotor vehicle moving over a given trajectory,’’ Optoelectron., Instrum. Data Process. 48, 454–461 (2012). https://doi.org/10.3103/S8756699012050044

    Article  Google Scholar 

  13. A. S. Dimova, K. Yu. Kotov, A. S. Mal’tsev, A. A. Nesterov, and M. N. Filippov, ‘‘Quadrotor control in payload transportation on suspension,’’ Optoelectron., Instrum. Data Process. 54, 520–524 (2018). https://doi.org/10.3103/S8756699018050151

    Article  ADS  Google Scholar 

  14. L. Meier, D. Honegger, and M. Pollefeys, ‘‘PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms,’’ in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), Seattle, 2015, pp. 6235–6240. https://doi.org/10.1109/ICRA.2015.7140074

  15. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, ‘‘ROS: an open-source robot operating system,’’ in ICRA Workshop on Open Source Software 3, 2009, p. 5.

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. AAAA-A17-117060610006-6.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Yu. Kotov or A. P. Yan.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, K.Y., Mal’tsev, A.S., Nesterov, A.A. et al. Algorithms and Architecture of the Multirotor Aircraft Trajectory Motion Control System. Optoelectron.Instrument.Proc. 56, 228–235 (2020). https://doi.org/10.3103/S8756699020030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020030085

Keywords:

Navigation