Skip to main content
Log in

Long-distance fiber-optic quantum key distribution using superconducting detectors

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

This paper presents the results of experimental studies on quantum key distribution in optical fiber using superconducting detectors. Key generation was obtained on an experimental setup based on a self-compensation optical circuit with an optical fiber length of 101.1 km. It was first shown that photon polarization encoding can be used for quantum key distribution in optical fiber over a distance in excess of 300 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. H. Bennet, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev. Lett. 68 (21), 3121–3124 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Gisin, G. Ribordy, W. Title, et al., “Quantum Cryptography,” Rev. Mod. Phys. 74 (1), 145–175 (2002).

    Article  ADS  Google Scholar 

  3. V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, et al., “The Security of Practical Quantum Key Distribution,” Rev. Mod. Phys. 81 (3), 1301–1350 (2009).

    Article  ADS  Google Scholar 

  4. T. Schmitt-Manderbach, H. Weier, M. Furst, et al., “Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km,” Phys. Rev. Lett. 98 (1), 010504 (2007).

    Article  ADS  Google Scholar 

  5. P. Villoresi, T. Jennewein, F. Tamburini, et al., “Experimental Verification of the Feasibility of a Quantum Channel between Space and Earth,” New J. Phys. 10 (3), 033038 (2008).

    Article  ADS  Google Scholar 

  6. J. Yin, Y. Cao, S.-B. Liu, et al., “Experimental Quasi-Single-Photon Transmission from Satellite to Earth,” Opt. Express. 21 (17), 20032 (2013).

    Article  ADS  Google Scholar 

  7. G. Vallone, D. Bacco, D. Dequal, et al., “Experimental Satellite Quantum Communication,” Phys. Rev. Lett. 115 (4), 040502 (2015).

    Article  ADS  Google Scholar 

  8. A. Muller, J. Breguet, and N. Gisin, “Experimental Demonstration of Quantum Cryptography using Polarized Photons in Optical Fiber over More than 1 km,” Europhys. Lett. 23 (6), 383–388 (1993).

    Article  ADS  Google Scholar 

  9. H. Kosaka, A. Tomita, Y. Nambu, et al., “Single-Photon Interference Experiment over 100 km for Quantum Cryptography System using Balanced Qated-Mode Photon Detector,” Electron. Lett. 39 (15), 1119–1201 (2003).

    Article  Google Scholar 

  10. T. Kimura, Y. Nambu, T. Hatanaka, et al., “Single-Photon Interference over 150-km Transmission using Silica- Based Integrated-Optic Interferometers for Quantum Cryptography,” Jpn. J. Appl. Phys. 43 (9AB), L1217–L1219 (2004).

    Article  ADS  Google Scholar 

  11. B. Korzh, C. C.-W. Lim, R. Houlmann, et al., “Provably Secure and Practical Quantum Key Distribution over 307 km of Optical Fibre,” Nature Photon. 9 (3), 163–168 (2015).

    Article  ADS  Google Scholar 

  12. IDQ. http://www.idquantique.com.

  13. MagiQ. http://www.magiqtech.com.

  14. R. Ozhegov, M. Elezov, Y. Kurochkin, et al., “Quantum Key Distribution over 300 km,” in Abst. of the Intern. Conf. “Micro- and Nanoelectronics-2014” (ICMNE-2014), Moscow–Zvenigorod, Russia, October 6–10, 2014, pp. 3–10.

    Google Scholar 

  15. H. Shibata, T. Honjo, and K. Shimizu, “Quantum Key Distribution over a 72 dB Channel Loss using Ultralow Dark Count Superconducting Single-Photon Detectors,” Opt. Lett. 39 (17), 5078–5081 (2014).

    Article  ADS  Google Scholar 

  16. D. Stucki, N. Walenta, F. Vannel, et al., “High Rate, Long-Distance Quantum Key Distribution over 250 km of Ultra Low Loss Fibers,” New J. Phys. 11, 075003 (2009).

    Article  ADS  Google Scholar 

  17. S. Wang, W. Chen, J.-F. Guo, et al., “2 GHz Clock Quantum Key Distribution over 260 km of Standard Telecom Fiber,” Opt. Lett. 37 (6), 1008–1010 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Takesue, S. W. Nam, Q. Zhang, et al., “Quantum Key Distribution over a 40-dB Channel Loss using Superconducting Single-Photon Detectors,” Nature Photon. 1, 343–348 (2007).

    Article  ADS  Google Scholar 

  19. Y. Liu, T.-Y. Chen, J. Wang, et al., “Decoy-State Quantum Key Distribution with Polarized Photons over 200 km,” Opt. Express. 18 (8), 8587–8594 (2010).

    Article  ADS  Google Scholar 

  20. D. Stucki, N. Gisin, O. Guinnard, et al., “Quantum Key Distribution over 67 km with a Plug & Play System,” New J. Phys. 4, 41.1–41.8 (2002).

    Google Scholar 

  21. V. L. Kurochkin, A. V. Zverev, Yu. V. Kurochkin, et al., “Using Single-Photon Detectors for Quantum Key Distribution in an Experimental Fiber-Optic Communication System,” Avtometriya 45 (4), 110–119 (2009) [Optoelectron., Instrum. Data Process. 45 (4), 374–381 (2009)].

    Google Scholar 

  22. V. L. Kurochkin, A. V. Zverev, Yu. V. Kurochkin, et al., “Experimental Studies in Quantum Cryptography,” Mikroelektronika 40 (4), 264–273 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Kurochkin.

Additional information

Original Russian Text © V.L. Kurochkin, A.V. Zverev, Yu.V. Kurochkin, I.I. Ryabtsev, I.G. Neizvestnyi, R.V. Ozhegov, G.N. Gol’tsman, P.A. Larionov, 2015, published in Avtometriya, 2015, Vol. 51, No. 6, pp. 17–22.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurochkin, V.L., Zverev, A.V., Kurochkin, Y.V. et al. Long-distance fiber-optic quantum key distribution using superconducting detectors. Optoelectron.Instrument.Proc. 51, 548–552 (2015). https://doi.org/10.3103/S8756699015060035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699015060035

Keywords

Navigation