Skip to main content
Log in

Modeling of Water Clusters by Numerical Solution of the Schrödinger Equation

  • STRUCTURING OF LIQUIDS AND GAS-SATURATED LIQUID MEDIA
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The work presents algorithms and results of the direct computational experiment on mathematical modeling of water clusters treated as quantum systems numerically described using the corresponding Schrödinger equation. The method earlier developed by the author for Monte Carlo numerical solution of the Schrödinger equation is used. This method has proved itself to be quite time-efficient. Its input data are average positions of particles in a quantum system, for description of which a second method is developed. Several energy isomers of water clusters are found by the method for construction of average positions of quantum-system particles. The energy isomers of the water dimer, trimer, and hexamer given in the work are regarded as possible geometrical structures of water clusters and illustrate the use of the proposed methods for calculation of quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. K. E. Plokhotnikov, “About one method of numerical solution of Schrödinger’s equation,” Math. Models Comput. Simul. 12 (2), 221–231 (2020). https://doi.org/10.1134/S2070048220020106

    Article  MathSciNet  Google Scholar 

  2. K. E. Plokhotnikov, “Solving the Schrödinger equation on the basis of finite-difference and Monte-Carlo approaches,” J. Appl. Math. Phys. 9 (2), 328–369 (2021). https://doi.org/10.4236/jamp.2021.92024

    Article  Google Scholar 

  3. Yu. I. Ozhigov, Constructive Physics (Nova Sci., New York, 2012).

    Google Scholar 

  4. N. F. Stepanov, Quantum Mechanics and Quantum Chemistry (Mir, Moscow, 2001) [in Russian].

  5. J. Kim, A. T. Baczewski, T. D. Beaudet, et al., “QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids,” J. Phys.: Condens. Matter 30 (19), 195901 (2018). https://doi.org/10.1088/1361-648X/aab9c3

    Article  ADS  Google Scholar 

  6. D. R. Hartree, The Calculation of Atomic Structures (Wiley, New York, 1957).

    MATH  Google Scholar 

  7. W. Kohn, “Nobel lecture: Electronic structure of matter—wave functions and density functional,” Rev. Mod. Phys. 71 (5), 1253–1266 (1999). https://doi.org/10.1103/RevModPhys.71.1253

    Article  ADS  Google Scholar 

  8. V. V. Vedenyapin, T. S. Kazakova, V. Ya. Kiselevskaia-Babinina, and B. N. Chetverushkin, “Schrödinger equation as a self-consistent field,” Dokl. Math. 97, 240–242 (2018). https://doi.org/10.1134/S1064562418030122

    Article  MathSciNet  MATH  Google Scholar 

  9. K. E. Plokhotnikov, “Numerical method for reconstructing the average positions of quantum particles in a molecular system,” Math. Models Comput. Simul. 13 (3), 372–381 (2021). https://doi.org/10.1134/S2070048221030133

    Article  MathSciNet  Google Scholar 

  10. M. Yu. Tretyakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov, “Water dimer and the atmospheric continuum,” Phys.-Usp. 57 (11), 1083–1098 (2014). https://doi.org/10.3367/UFNe.0184.201411c.1199

    Article  ADS  Google Scholar 

  11. A. Mukhopadhyay, S. S. Xantheas, and R. J. Saykally, “The water dimer II: Theoretical investigations,” Chem. Phys. Lett. 700, 163–175 (2018). https://doi.org/10.1016/j.cplett.2018.03.057

    Article  ADS  Google Scholar 

  12. S. S. Xantheas, C. J. Burnham, and R. J. Harrison, “Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles,” J. Chem. Phys. 116 (4), 1493–1499 (2002). https://doi.org/10.1063/1.1423941

    Article  ADS  Google Scholar 

  13. J. Cui, H. Liu, and K. D. Jordan, “Theoretical characterization of the (H2O)21 cluster: Application of an n‑body decomposition procedure,” J. Phys. Chem. B 110 (38), 18872–18878 (2006). https://doi.org/10.1021/jp056416m

    Article  Google Scholar 

  14. I. Ignatov and O. Mosin, “Structural mathematical models describing water clusters,” Math. Theory Model. 3 (11), 72–87 (2013).

    Google Scholar 

  15. Y. Gao, H. Fang, and K. Ni, “A hierarchical clustering method of hydrogen bond networks in liquid water undergoing shear flow,” Sci. Rep. 11, 9542 (2021). https://doi.org/10.1038/s41598-021-88810-7

    Article  ADS  Google Scholar 

  16. M. W. Feyereisen, D. Feller, and D. A. Dixon, “Hydrogen bond energy of the water dimer,” J. Phys. Chem. 100 (8), 2993–2997 (1996). https://doi.org/10.1021/jp952860l

    Article  Google Scholar 

  17. A. Michaelides and K. Morgenstern, “Ice nanoclusters at hydrophobic metal surfaces,” Nat. Mater. 6, 597–601 (2007). https://doi.org/10.1038/nmat1940

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Plokhotnikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plokhotnikov, K.E. Modeling of Water Clusters by Numerical Solution of the Schrödinger Equation. Phys. Wave Phen. 30, 156–168 (2022). https://doi.org/10.3103/S1541308X22030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22030074

Keywords:

Navigation