Skip to main content
Log in

Physical Mechanisms of Activation of Radical Reactions in Aqueous Solutions under Mechanical and Magnetic Effect: Problem of Singlet Oxygen

  • INTERACTION OF QUANTUM AND CLASSICAL EFFECTS IN AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Physical mechanisms of both classical and quantum nature, which can in principle activate biochemical kinetics of solutions, are discussed. The generation of hydrogen peroxide (H2O2) molecules under external effects on an aqueous solution containing molecular oxygen О2 is analyzed as an example. The possibility of enriching an aqueous solution with hydrogen peroxide without participation of oxygen is also discussed. External effects of different physical types—mechanical (vibrational), magnetic, and thermal—are considered and compared. Possible influence of hydrodynamic vortices arising during vibrations on the spin states of oxygen molecules is suggested and theoretically substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. A. Shcherbakov, “Current trends in the studies of aqueous solutions,” Phys. Wave Phenom. 30 (3), 129–134 (2022). https://doi.org/10.3103/S1541308X22030104

  2. I. A. Shcherbakov, I. V. Baimler, S. V. Gudkov, G. A. Lyakhov, G. N. Mikhailova, V. I. Pustovoy, R. M. Sarimov, A. V. Simakin, and A. V. Troitsky, “Influence of a constant magnetic field on some properties of water solutions,” Dokl. Phys. 65 (8), 273–275 (2020). https://doi.org/10.1134/S1028335820080078

    Article  ADS  Google Scholar 

  3. I. V. Baymler, S. V. Gudkov, R. M. Sarimov, A. V. Simakina, and I. A. Shcherbakov, “Concentration dependences of molecular oxygen and hydrogen in aqueous solutions,” Dokl. Phys. 65 (1), 5–7 (2020). https://doi.org/10.1134/S1028335820010085

    Article  ADS  Google Scholar 

  4. S. V. Gudkov, N. V. Penkov, I. V. Baimler, G. A. Lyakhov, V. I. Pustovoy, A. V. Simakin, R. M. Sarimov, and I. A. Scherbakov, “Effect of mechanical shaking on the physicochemical properties of aqueous solutions,” Int. J. Mol. Sci. 21 (21), 8033 (2020). https://doi.org/10.3390/ijms21218033

    Article  Google Scholar 

  5. R. M. Sarimov, A. V. Simakin, T. A. Matveeva, S. V. Gudkov, G. A. Lyakhov, V. I. Pustovoy, A. V. Troitskii, and I. A. Shcherbakov, “Influence of magnetic fields with induction of 7 T on physical and chemical properties of aqueous NaCl solutions,” Appl. Sci. 11 (23), 11466 (2021). https://doi.org/10.3390/app112311466

    Article  Google Scholar 

  6. D. T. Sawyer, Oxygen Chemistry (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  7. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine (Oxford Univ. Press, Oxford, 2007).

    Google Scholar 

  8. V. I. Bruskov, Zh. K. Masalimov, and A. V. Chernikov, “Heat-induced formation of reactive oxygen species by reduction of dissolve air oxigen,” Dokl. Akad. Nauk. 381 (2), 262–264 (2001) [in Russian]. https://elibrary.ru/item.asp?id=44447015

  9. V. I. Bruskov, E. E. Karmanova, A. V. Chernikov, A. M. Usacheva, V. E. Ivanov, and V. I. Emel’yanenko, “Formation of hydrated electrons in water under thermal electromagnetic exposure,” Phys. Wave Phenom. 29 (2), 94–97 (2021). https://doi.org/10.3103/S1541308X21020059

    Article  ADS  Google Scholar 

  10. J. K. Lee, K. L. Walker, H. S. Han, J. Kanga, F. B. Prinz, R. M. Waymouth, H. G. Nam, and R. N. Zare, “Spontaneous generation of hydrogen peroxide from aqueous microdroplets,” Proc. Nat. Acad. Sci. 116 (39), 19294–19298 (2019). https://doi.org/10.1073/pnas.1911883116

    Article  ADS  Google Scholar 

  11. P. A. Stunzhas, “Mechanochemical instability of water and its applications,” Phys. Wave Phenom. 28 (2), 111–115 (2020). https://doi.org/10.3103/S1541308X20020168

    Article  ADS  Google Scholar 

  12. G. A. Lyakhov, I. A. Shcherbakov, and M. A. Shermeneva, “Layering phase transition in a liquid solution with cross hydrogen bonds: Bond number density as the second order parameter,” Phys.Wave Phenom. 28 (3), 236–240 (2020). https://doi.org/10.3103/S1541308X20030139

    Article  ADS  Google Scholar 

  13. A. L. Buchachenko, R. Z. Sagdeev, and K.M. Salikhov, Magnetic and Spin Effects in Chemical Reactions (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, 4th ed. (Butterworth–Heinemann, Oxford, 1975).

  15. S. J. Barnett, “Magnetization by rotation,” Phys. Rev. 6 (4), 239–270 (1915). https://doi.org/10.1103/PhysRev.6.239

    Article  ADS  Google Scholar 

  16. S. J. Barnett, “Gyromagnetic and electron-inertia effects,” Rev. Mod. Phys. 7 (2), 129–166 (1935). https://doi.org/10.1103/RevModPhys.7.129

    Article  ADS  Google Scholar 

  17. B. T. Draine, “§7.3 Barnett effect,” in The Cold Universe, Ed. by A. W. Blain, F. Combes, B. T. Draine, D. Pfenniger, and Y. Revaz (Springer, Berlin, 2003).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 3rd ed. (Butterworth–Heinemann, Oxford, 1976).

  19. Yu. M. Gershenzon, S. G. Zvenigorodskii, and V. B. Ro-zenshtein, “The chemistry of OH and HO2 radicals in the Earth’s atmosphere,” Russ. Chem. Rev. 59 (10), 928–944 (1990). https://doi.org/10.1070/RC1990v059n10ABEH003567

    Article  ADS  Google Scholar 

  20. M. A. Margulis, “Sonoluminescence,” Phys.-Usp. 43, 259–282 (2000). https://doi.org/10.1070/PU2000v043n03ABEH000455

    Article  ADS  Google Scholar 

  21. O. V. Rudenko, “Nonlinear acoustic waves in liquids with gas bubbles: A review,” Phys. Wave Phenom. 30 (3), 145–155 (2022). https://doi.org/10.3103/S1541308X22030098

  22. H. B. G. Casimir and D. Polder, “The influence of retardation on the London–van der Waals forces,” Phys. Rev. 73 (4), 360–372 (1948). https://doi.org/10.1103/PhysRev.73.360

    Article  MATH  ADS  Google Scholar 

  23. C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, “Observation of the dynamical Casimir effect in a superconducting circuit,” Nature 479, 376–379 (2011). https://doi.org/10.1038/nature10561

    Article  ADS  Google Scholar 

  24. D. A. T. Somers, J. L. Garrett, K. J. Palm, and J. N. Munday, “Measurement of the Casimir torque,” Nature 564, 386–389 (2018). https://doi.org/10.1038/s41586-018-0777-8

    Article  ADS  Google Scholar 

  25. A. Larraza and B. Denardo, “An acoustic Casimir effect,” Phys. Lett. A 248 (2–4), 151–155 (1998). https://doi.org/10.1016/S0375-9601(98)00652-5

  26. H.P. Robertson, “The uncertainty principle,” Phys. Rev. 34 (1), 163–164 (1929). https://doi.org/10.1103/PhysRev.34.163

    Article  ADS  Google Scholar 

  27. E. Schrödinger, “Zum Heisenbergschen Unschärfeprinzip,” Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 14, 296–303 (1930).

    MATH  Google Scholar 

  28. G. A. Lyakhov, V. I. Man’ko, and I. A. Shcherbakov, “Action of classical fields on quantum systems within the Schrödinger–Robertson uncertainty relation,” Phys. Wave Phenom. 30 (3), 169–173 (2022). https://doi.org/10.3103/S1541308X22030049

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Suyazov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyakhov, G.A., Man’ko, V.I., Suyazov, N.V. et al. Physical Mechanisms of Activation of Radical Reactions in Aqueous Solutions under Mechanical and Magnetic Effect: Problem of Singlet Oxygen. Phys. Wave Phen. 30, 174–181 (2022). https://doi.org/10.3103/S1541308X22030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22030050

Keywords:

Navigation