Skip to main content
Log in

Dynamics of Polymer Membrane Swelling in an Aqueous Suspension of Amino Acids. The Role of Isotopic Composition

  • PHYSICAL AND BIOCHEMICAL APPLICATIONS OF AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The interaction of Nafion polymer membrane with different amino acids has been experimentally investigated using photoluminescence spectroscopy. Experiments were performed with NaCl physiological solutions based on natural water (with a deuterium content of 157 ± 1 ppm) or on deuterium-depleted water (DDW) (deuterium content ≤1 ppm). This study was motivated by the fact that Nafion swelling in natural water is accompanied by “unwinding” of polymer fibers into the liquid bulk, whereas no unwinding occurs in DDW. In addition, the set of polymer fibers unwound into the liquid bulk is similar to the extracellular matrix (glycocalix) on a cellular membrane surface. It is of interest to analyze the role of unwound fibers in the interaction of amino acids with the polymer membrane surface. The interaction of amino acids with the membrane surface was found to induce luminescence quenching. We observed for the first time different dynamic modes arising during Nafion membrane swelling in a suspension of amino acids with different isotopic compositions, including trigger effects similar to the processes occurring in logic gates of computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. A. Mauritz and R. B. Moore, “State of understanding of Nafion,” Chem. Rev. 104 (10), 4535–4586 (2004). https://doi.org/10.1021/cr0207123

    Article  Google Scholar 

  2. M. Ghadiri, A. K. Kang, and N. E. Gorji, “XRD characterization of graphene-contacted perovskite solar cells: Moisture degradation and dark-resting recovery,” Superlattices Microstruct. 146, 106677 (2020). https://doi.org/10.1016/j.spmi.2020.106677

    Article  Google Scholar 

  3. B. Chai, H. Yoo, and G. H. Pollack, “Effect of radiant energy on near-surface water,” J. Phys. Chem. B 113 (42), 13953–13958 (2009). https://doi.org/10.1021/jp908163w

    Article  Google Scholar 

  4. M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, “Surface-induced micelle orientation in Nafion films,” Macromolecules 44 (8), 2893–2899 (2011). https://doi.org/10.1021/ma102361f

    Article  ADS  Google Scholar 

  5. G. Gebel, “Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution,” Polymer 41 (15), 5829–5838 (2000). https://doi.org/10.1016/S0032-3861(99)00770-3

    Article  Google Scholar 

  6. F. H. Garzon, T. Rockward, I. G. Urdampilleta, E. L. Brosha, and F. A. Uribe, “The impact of hydrogen fuel contaminates on long-term PMFC performance,” ECS Trans. 3 (1), 695–703 (2006). https://doi.org/10.1149/1.2356190

    Article  Google Scholar 

  7. G. H. Pollack, The Fourth Phase of Water: Beyond Solid, Liquid, and Vapor (Ebner, Seattle, WA, 2013). https://doi.org/10.3390/w5020638

  8. P. Attard, D. J. Mitchell, and B. W. Ninham, “The attractive forces between polar lipid bilayers,” Biophys. J. 53 (3), 457–460 (1988). https://doi.org/10.1016/s0006-3495(88)83122-9

    Article  Google Scholar 

  9. D. C. Elton, P. D. Spencer, J. D. Riches, and E. D. Williams, “Exclusion zone phenomena in water—a critical review of experimental findings and theories,” Int. J. Mol. Sci. 21 (14), 5041 (2020). https://doi.org/10.3390/ijms21145041

    Article  Google Scholar 

  10. N. F. Bunkin, V. S. Gorelik, V. A. Kozlov, A. V. Shkirin, and N. V. Suyazov, “Colloidal crystal formation at the “Nafion–water” interface,” J. Phys. Chem. B 118 (12), 3372–3377 (2014). https://doi.org/10.1021/jp4100729

    Article  Google Scholar 

  11. N. F. Bunkin, A. V. Shkirin, V. A. Kozlov, B. W. Ninham, E. V. Uspenskaya, and S. V. Gudkov, “Near-surface structure of Nafion in deuterated water,” J. Chem. Phys. 149 (16), 164901 (2018). https://doi.org/10.1063/1.5042065

    Article  ADS  Google Scholar 

  12. B. W. Ninham, P. N. Bolotskova, S. V. Gudkov, Y. Juraev, M. S. Kiryanova, V. A. Kozlov, R. S. Safronenkov, A. V. Shkirin, E. V. Uspenskaya, and N. F. Bunkin, “Formation of water-free cavity in the process of Nafion swelling in a cell of limited volume; Effect of polymer fibers unwinding,” Polymers 12 (12), 2888 (2020). https://doi.org/10.3390/polym12122888

    Article  Google Scholar 

  13. P. N. Bolotskova, N. F. Bunkin, V. A. Kozlov, T. Yu. Komkova, M. S. Kir’yanova, R. S. Safronenkov, and M. T. Vu, “The role of shaking of a liquid sample in the dynamics of polymer membrane swelling: A cell of limited volume,” Phys. Wave Phenom. 29 (2), 114–122 (2021). https://doi.org/10.3103/S1541308X21020047

    Article  ADS  Google Scholar 

  14. N. F. Bunkin, V. A. Kozlov, M. S. Kiryanova, A. A. Pavlenko, R. S. Safronenkov, A. V. Shkirin, and N. N. Shusharina, “Rheological effects of polymer membrane swelling in water and their dependence on isotopic composition,” Phys. Wave Phenom. 28 (2), 182–186 (2020). https://doi.org/10.3103/S1541308X20020051

    Article  ADS  Google Scholar 

  15. H. Craig, “Standard reporting concentrations of deuterium and oxygen-18 in natural water,” Science 133 (3467), 1833–1834 (1961). https://doi.org/10.1126/science.133.3467.1833

    Article  ADS  Google Scholar 

  16. D. R. Baker, R. F. Simmerman, J. J. Sumner, B. D. Bruce, and C. A. Lundgren, “Photoelectrochemistry of photosystem I bound in Nafion,” Langmuir 30 (45), 13650–13655 (2014). https://doi.org/10.1021/la503132h

    Article  Google Scholar 

  17. P. Fromme, P. Jordan, and N. Krauß, “Structure of photosystem I,” Biochim. Biophys. Acta 1507 (1–3), 5–31 (2001). https://doi.org/10.1016/s0005-2728(01)00195-5

  18. C. Fu, W. Yang, X. Chen, and D. G. Evans, “Direct electrochemistry of glucose oxidase on a graphite nanosheet–Nafion composite film modified electrode,” Electrochem. Commun. 11 (5), 997–1000 (2009). https://doi.org/10.1016/j.elecom.2009.02.042

    Article  Google Scholar 

  19. T. I. Valdes, W. Ciridon, B. D. Ratner, and J. D. Bryers, “Surface modification of a perfluorinated ionomer using a glow discharge deposition method to control protein adsorption,” Biomaterials 29 (10), 1356–1366 (2008). https://doi.org/10.1016/j.biomaterials.2007.11.035

    Article  Google Scholar 

  20. T. I. Valdes, W. Ciridon, B. D. Ratner, and J. D. Bryers, “Modulation of fibroblast inflammatory response by surface modification of a perfluorinated ionomer,” Biointerphases 6 (2), 43–53 (2011). https://doi.org/10.1116/1.3583535

    Article  Google Scholar 

  21. Y. Cheng and C. I. Moraru, “Long-range interactions keep bacterial cells from liquid-solid interfaces: Evidence of a bacteria exclusion zone near Nafion surfaces and possible implications for bacterial attachment,” Colloids Surf., B 162, 16–24 (2018). https://doi.org/10.1016/j.colsurfb.2017.11.016

    Article  Google Scholar 

  22. M. E. Astashev, P. N. Bolotskova, N. F. Bunkin, S. V. Gudkov, V. A. Kozlov, and M. A. Okuneva, “Swelling of polymer membrane in an aqueous protein suspension: Photoluminescence spectroscopy experiments,” Phys. Wave Phenom. 29 (2), 123–130 (2021). https://doi.org/10.3103/S1541308X21020035

    Article  ADS  Google Scholar 

  23. G. Ji, T. Zheng, X. Gao, and Z. Liu, “A highly selective turn-on luminescent logic gates probe based on post-synthetic MOF for aspartic acid detection,” Sens. Actuators, B 284, 91–95 (2019). https://doi.org/10.1016/j.snb.2018.12.114

    Article  Google Scholar 

  24. N. F. Bunkin, G. A. Lyakhov, V. A. Kozlov, A. V. Shkirin, I. I. Molchanov, M. T. Vu, I. S. Bereza, N. G. Bolikov, V. L. Fouilhe, Igor S. Golyak, Ilya S. Golyak, I. L. Fufurin, V. S. Gorelik, E. V. Uspenskaya, H. S. Nguyen, and S. V. Gudkov, “Time dependence of the luminescence from a polymer membrane swollen in water: Concentration and isotopic effects,” Phys. Wave Phenom. 25 (4), 259–271 (2017). https://doi.org/10.3103/S1541308X17040045

    Article  ADS  Google Scholar 

  25. N. F. Bunkin, P. N. Bolotskova, E. V. Bondarchuk, V. G. Gryaznov, S. V. Gudkov, V. A. Kozlov, M. A. Okuneva, O. V. Ovchinnikov, O. P. Smoliy, and I. F. Turkanov, “Long-term effect of low-frequency electromagnetic irradiation in water and isotonic aqueous solutions as studied by photoluminescence from polymer membrane,” Polymers 13 (9), 1443 (2021). https://doi.org/10.3390/polym13091443

    Article  Google Scholar 

  26. B. J. Berne and R. Pecora, Dynamic Light Scattering (Krieger, Malabar, FL, 1990).

    Google Scholar 

  27. B. Chu, Laser Light Scattering (Academic, New York, 1974). https://doi.org/10.1002/bbpc.19760800626

  28. N. F. Bunkin, A. V. Shkirin, V. A. Babenko, A. A. Sychev, A. K. Lomkova, and E. S. Kulikov, “Laser diagnostics of the bubston phase in the bulk of aqueous salt solutions,” Phys. Wave Phenom. 23 (3), 161–175 (2015). https://doi.org/10.3103/S1541308X15030012

    Article  ADS  Google Scholar 

  29. N. F. Bunkin, A. V. Shkirin, N. V. Suyazov, V. A. Babenko, A. A. Sychev, N. V. Penkov, K. N. Belosludtsev, and S. V. Gudkov, “Formation and dynamics of ion-stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions,” J. Phys. Chem. B 120 (7), 1291–1303 (2016). https://doi.org/10.1021/acs.jpcb.5b11103

    Article  Google Scholar 

  30. S. O. Yurchenko, A. V. Shkirin, B. W. Ninham, A. A. Sychev, V. A. Babenko, N. V. Penkov, N. P. Kryuchkov, and N. F. Bunkin, “Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions,” Langmuir 32 (43), 11245–11255 (2016). https://doi.org/10.1021/acs.langmuir.6b01644

    Article  Google Scholar 

  31. F. J. Millero, A. Lo Surdo, and C. Shin, “The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25°C,” J. Phys. Chem. 82 (7), 784–792 (1978). https://doi.org/10.1021/j100496a007

    Article  Google Scholar 

  32. E. J. Cohn and J. T. Edsall, Proteins, Amino Acids and Peptides (Reinhold, New York, 1943), pp. 370–381.

    Google Scholar 

  33. C. Jolicoeur and J. Boileau, “Apparent molal volumes and heat capacities of low molecular weight peptides in water at 25°C,” Can. J. Chem. 56 (21), 2707–2713 (1978). https://doi.org/10.1139/V78-446

    Article  Google Scholar 

  34. http://marlin.bio.umass.edu/biology/kunkel/probe/ buffers/aa.html. Accessed July 9, 2021.

  35. https://chem.libretexts.org/Bookshelves/Organic_ Chemistry/Map%3A_Organic_Chemistry_(Wade)/ 25%3A_Amino_Acids_Peptides_and_Proteins/25.02% 3A_Isoelectric_Points_and_Electrophoresis. Accessed July 9, 2021.

  36. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Chap. 16: Protein Fluorescence (Springer, Boston, MA, 2006), pp. 529–575. https://doi.org/10.1007/978-1-4757-3061-6_13

  37. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Chap. 8: Quenching of Fluorescence (Springer, Boston, MA, 2006), pp. 277–330.

  38. N. F. Bunkin and F. V. Bunkin, “Bubston structure of water and aqueous solutions of electrolytes,” Phys. Wave Phenom. 21 (2), 81–109 (2013). https://doi.org/10.3103/S1541308X13020015

    Article  ADS  Google Scholar 

  39. B. Davies, B. W. Ninham, and P. Richmond, “Van der Waals forces between thin cylinders: New features due to conduction processes,” J. Chem. Phys. 58 (2), 744–750 (1973). https://doi.org/10.1063/1.1679262

    Article  ADS  Google Scholar 

  40. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, Burlington, MA, 2011). https://doi.org/10.1016/C2009-0-21560-1

  41. Y. Waka, K. Hamamoto, and N. Mataga, “Heteroexcimer systems in aqueous micellar solutions,” Photochem. Photobiol. 32 (1), 27–35 (1980). https://doi.org/10.1111/j.1751-1097.1980.tb03982.x

    Article  Google Scholar 

  42. S. J. Atherton and P. C. Beaumont, “Quenching of the fluorescence of DNA-intercalated ethidium bromide by some transition-metal ions,” J. Phys. Chem. 90 (10), 2252–2259 (1986). https://doi.org/10.1021/j100401a051

    Article  Google Scholar 

  43. T. Ando and H. Asai, “Charge effects on the dynamic quenching of fluorescence of fluorescence of 1,N 6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide,” J. Biochem. 88 (1), 255–264 (1980). https://doi.org/10.1093/oxfordjournals.jbchem.a132956

    Article  Google Scholar 

  44. T. Ando, H. Fujisaki, and H. Asai, “Electric potential at regions near the two specific thiols of heavy meromyosin determined by the fluorescence quenching technique: I. Effect of ATP,” J. Biochem. 88 (1), 265–276 (1980). https://doi.org/10.1093/oxfordjournals.jbchem.a132957

    Article  Google Scholar 

  45. P. Facci, Biomolecular Electronics: Bioelectronics and the Electrical Control of Biological Systems and Reactions (William Andrew, Oxford, 2014).

    Book  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 22-22-00649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Bunkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunkin, N.F., Bolotskova, P.N., Kozlov, V.A. et al. Dynamics of Polymer Membrane Swelling in an Aqueous Suspension of Amino Acids. The Role of Isotopic Composition. Phys. Wave Phen. 30, 196–208 (2022). https://doi.org/10.3103/S1541308X22030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22030025

Keywords:

Navigation