Skip to main content
Log in

Estimation of the Influence of Meteorological Factors on the Aerosol Lidar Signal in Tunnels above the Elbrus Volcano Chamber

  • REMOTE SENSING OF NATURAL ENVIRONMENTS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A harmonic analysis of lidar aerosol backscattering, Earth’s crust deformation data (measured by a laser interferometer strainmeter), and meteorological factors (air relative humidity, atmospheric pressure, and air temperature), monitored in the period from August 23, 2019 to June 13, 2020 in the tunnels of the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences), has been performed. Phase portraits of meteorological factor variations have been constructed, and phase shifts have been calculated with respect to the aerosol backscattering signal measured by the lidar. A high contribution (up to 70%) of external atmosphere humidity to the obscuring of lidar signal modulation is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. V. Biryulin, I. A. Kozlov, and A. K. Yurkov, “Investigation of informative value of volume radon activity in soil during both the stress build up and tectonic earthquakes in the South Kuril region,” Vestn. Region. Organ. Uchebno-Nauchn. Tsenta, Ser. Nauki Zemle, No. 4 (44), 73–83 (2019) [in Russian]. https://doi.org/10.31431/1816-5524-2019-4-44-73-83

  2. S. Pulinets and D. Ouzounov, The Possibility of Earthquake Forecasting. Learning from Nature (IOP Publ., Bristol, 2018). https://doi.org/10.1088/978-0-7503-1248-6

  3. V. A. Alekseev, A. N. Lyash, and S. M. Pershin, “Lidar monitoring of tectonic activity by aerosol emission,” Phys. Wave Phenom. 12 (1), 25–31 (2004).

    Google Scholar 

  4. A. F. Bunkin and S. M. Pershin, “Lidar measurement of dynamics of spatial characteristics of aerosol in boundary atmospheric layer under urban conditions,” Phys. Wave Phenom. 13 (1), 37–43 (2005).

    Google Scholar 

  5. S. M. Pershin, A. L. Sobisevich, M. Ya. Grishin, V. V. Gravirov, V. A. Zavozin, V. V. Kuzminov, V. N. Lednev, D. V. Likhodeev, V. S. Makarov, A. V. Myasnikov, and A. N. Fedorov, “Volcanic activity monitoring by unique lidar based on a diode laser,” Laser Phys. Lett. 17 (11), 115607 (2020). https://doi.org/10.1088/1612-202X/abbedc

    Article  ADS  Google Scholar 

  6. S. M. Pershin, M. Ya. Grishin, V. A. Zavozin, V. N. Lednev, V. A. Lukyanchenko, and V. S. Makarov, “Aerosol layers sensing by an eye-safe lidar near the Elbrus summit,” Laser Phys. Lett. 17 (2), 026003 (2020). https://doi.org/10.1088/1612-202X/ab66c4

    Article  ADS  Google Scholar 

  7. L. I. Demina, M. L. Kopp, N. V. Koronovskii, M. G. Leonov, Yu. G. Leonov, M. G. Lomize, D. I. Panov, M. L. Somin, and M. I. Tuchkova, Greater Caucasus in the Alpine Era (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  8. I. P. Dobrovol’skii, Theory of the Preparation of a Tectonic Earthquake (Inst. Fiz. Zemli Akad. Nauk SSSR, Moscow, 1991) [in Russian].

    Google Scholar 

  9. I. P. Dobrovol’skii, Mathematical Theory of Preparation and Prediction of a Tectonic Earthquake (Fizmatlit, Moscow, 2009) [in Russian].

    MATH  Google Scholar 

  10. I. A. Kozlova and A. K. Yurkov, “The methodic problems of concentration of radon-222 measuring in soil air during monitoring organisation,” Uralsk. Geofiz. Vestn., No. 1, 30–340 (2005) [in Russian].

  11. G. G. Matvienko, V. A. Alekseev, A. I. Grishin, G. M. Krekov, and M. M. Krekova, “Study of fluctuations of electric and aerosol characteristics of the atmosphere as a precursor of tectonic activity,” Atmos. Oceanic Opt. 20 (8), 629–637 (2007). https://ao.iao.ru/en/content/text?vol=20&issue=08& num=5

  12. P. Melchior, The Earth Tides (Pergamon, Oxford, 1966).

    Google Scholar 

  13. S. M. Pershin, M. Ya. Grishin, V. A. Zavozin, V. S. Makarov, V. N. Lednev, A. N. Fedorov, A. V. Myasnikov, and A. V. Turin, “Diode laser generating 3-ns pulses for a high resolution lidar,” Quantum Electron. 51 (5), 423–426 (2021). https://doi.org/10.1070/QEL17544

    Article  ADS  Google Scholar 

  14. V. K. Milyukov and A. V. Myasnikov, “Long-term observations of lithosphere deformations by the Baksan laser interferometer in underground conditions,” Meas. Tech. 55, 63–67 (2012). https://doi.org/10.1007/s11018-012-9917-y

    Article  Google Scholar 

  15. V. K. Milyukov and A. V. Myasnikov, “Influence of thermoelastic and baric processes on measurements of lithosphere deformations by means of a Baksan laser interferometer,” Meas. Tech. 55, 659–665 (2012). https://doi.org/10.1007/s11018-012-0017-9

    Article  Google Scholar 

  16. V. K. Milyukov, B. S. Klyachko, A. V. Myasnikov, P. S. Striganov, A. F. Yanin, and A. N. Vlasov, “A laser interferometer-deformograph for monitoring the crust movement,” Instrum. Exp. Tech. 48 (6), 780–795 (2005). https://doi.org/10.1007/s10786-005-0140-9

    Article  Google Scholar 

  17. V. K. Milyukov, A. V. Kopaev, A. V. Lagutkina, A. P. Mironov, and A. V. Myasnikov, “Observations of crustal tide strains in the Elbrus area,” Izv., Phys. Solid Earth 43 (11), 922–930 (2007). https://doi.org/10.1134/S106935130711002X

    Article  Google Scholar 

  18. A. V. Myasnikov, “On the problem of taking into account the effect of meteorological factors on large precision systems: A case study of the Baksan large-base laser interferometer,” Seism. Instrum. 56, 17–25 (2020). https://doi.org/10.3103/S0747923920010107

    Article  Google Scholar 

  19. S. M. Pershin, A. L. Sobisevich, M. Ya. Grishin, V. A. Zavozin, V. S. Makarov, V. N. Lednev, A. N. Fedorov, A. V. Myasnikov, and D. G. Artemova, “Omnidirectional modulation of seasonal compression of the Earth’s crust and the aerosol lidar signal in a tunnel above the chamber of Elbrus volcano,” Dokl. Phys. 66, 303–306 (2021). https://doi.org/10.1134/S1028335821110069

Download references

ACKNOWLEDGMENTS

We are grateful to D.G. Artemova for her help in preparing the manuscript for publication.

Funding

This study was supported by the Russian Science Foundation (agreement no. 19-19-00712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Pershin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myasnikov, A.V., Pershin, S.M., Grishin, M.Y. et al. Estimation of the Influence of Meteorological Factors on the Aerosol Lidar Signal in Tunnels above the Elbrus Volcano Chamber. Phys. Wave Phen. 30, 119–127 (2022). https://doi.org/10.3103/S1541308X22020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22020054

Keywords:

Navigation