Skip to main content
Log in

The Spectroscopic Study of Indocyanine Green J-Aggregate Stability in Human Blood and Plasma

  • OPTICAL SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Spectroscopic approaches are very good to noninvasively determine the most significant indicators of the tissue state. Indocyanine green (ICG) is a well-known fluorescent dye approved for clinical applications, which has a short circulation time in the vascular system and low photostability. At high temperatures the molecular solution of the photosensitizer self-assembles into a stable J-aggregate form of ICG nanoparticles (ICG NPs) with the absorption peak in the near-infrared range. Investigation of ICG NP stability in human blood and plasma using a fiber-spectroscopic system demonstrates no difference in absorption properties and different dependence of the integrated fluorescence ratio between ICG monomers and J-aggregates in blood and plasma. Transition of ICG NP aggregates to the monomeric form in human blood plasma results in a higher circulation time of the fluorescent dye in the vascular system. High stability of aggregates and a low elimination rate may increase efficiency of fluorescent diagnostics of near-tumor tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Bacac and I. Stamenkovic, “Metastatic cancer cell,” Annu. Rev. Pathol.: Mech. Dis. 3, 221–247 (2008). https://doi.org/10.1146/annurev.pathmechdis.3.121806.151523

    Article  Google Scholar 

  2. A. F. Chambers, A. C. Groom, and I. C. MacDonald, “Dissemination and growth of cancer cells in metastatic sites,” Nat. Rev. Cancer. 2 (8), 563–572 (2002). https://doi.org/10.1038/nrc865

    Article  Google Scholar 

  3. J. S. Yoo, H. B. Kim, N. Won, J. Bang, S. Kim, S. Ahn, B. C. Lee, and K.-S. Soh, “Evidence for an additional metastatic route: In vivo imaging of cancer cells in the primo-vascular system around tumors and organs,” Mol. Imaging Biol. 13 (3), 471–480 (2011). https://doi.org/10.1007/s11307-010-0366-1

    Article  Google Scholar 

  4. H. D. Kuntz and W. Schregel, “Indocyanine green: Evaluation of liver function—application in intensive care medicine,” in Practical Applications of Fiberoptics in Critical Care Monitoring, Ed. by F. R. Lewis, Jr. and U. J. Pfeiffer (Springer, Berlin, Heidelberg, 1990), pp. 57–62. https://doi.org/10.1007/978-3-642-75086-1

  5. G. R. Cherrick, S. W. Stein, C. M. Leevy, and C. S. Davidson, “Indocyanine green: Observations on its physical properties, plasma decay, and hepatic extraction,” J. Clin. Invest. 39 (4), 592–600 (1960). https://doi.org/10.1172/JCI104072

    Article  Google Scholar 

  6. K. J. Baker, “Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins,” Proc. Soc. Exp. Biol. Med. 122 (4), 957–963 (1966). https://doi.org/10.3181/00379727-122-31299

    Article  Google Scholar 

  7. T. J. Muckle, “Plasma-proteins binding of indocyanine green,” Biochem. Med. 15 (1), 17–21 (1976). https://doi.org/10.1016/0006-2944(76)90069-7

    Article  Google Scholar 

  8. R. C. Benson and H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol. 23 (1), 159–163 (1978). https://doi.org/10.1088/0031-9155/23/1/017

    Article  Google Scholar 

  9. S. Mordon, J. M. Devoisselle, S. Soulie-Begu, and T. Desmettre, “Indocyanine green: Physicochemical factors affecting its fluorescence in vivo,” Microvasc. Res. 55 (2), 146–152 (1998). https://doi.org/10.1006/mvre.1998.2068

    Article  Google Scholar 

  10. S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, T. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Visual Sci. 39 (7), 1286–1290 (1998).

    Google Scholar 

  11. T. Desmettre, J. M. Devoisselle, and S. Mordon, “Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography,” Surv. Ophthalmol. 45 (1), 15–27 (2000). https://doi.org/10.1016/S0039-6257(00)00123-5

    Article  Google Scholar 

  12. E.-H. Lee, M.-K. Lee, and S.-J. Lim, “Enhanced stability of indocyanine green by encapsulation in zein-phosphatidylcholine hybrid nanoparticles for use in the phototherapy of cancer,” Pharmaceutics 13 (3), 305 (2021). https://doi.org/10.3390/pharmaceutics13030305

    Article  Google Scholar 

  13. M. Sevieri, F. Silva, A. Bonizzi, L. Sitia, M. Truffi, S. Mazzucchelli, and F. Corsi, “Indocyanine green nanoparticles: Are they compelling for cancer treatment?” Front. Chem. 8, 535 (2020). https://doi.org/10.3389/fchem.2020.00535

    Article  ADS  Google Scholar 

  14. R. Liu, J. Tang, Y. Xu, Y. Zhou, and Z. Dai, “Nano-sized indocyanine green J-aggregate as a one-component theranostic agent,” Nanotheranostics 1 (4), 430–439 (2017). https://doi.org/10.7150/ntno.19935

    Article  Google Scholar 

  15. W. West and S. Pearce, “The dimeric state of cyanine dyes,” J. Phys. Chem. 69 (6), 1894–1903 (1965). https://doi.org/10.1021/j100890a019

    Article  Google Scholar 

  16. J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: Basic research and applications review,” Methods Appl. Fluoresc. 6 (1), 012001 (2017). https://doi.org/10.1088/2050-6120/aa8d0d

    Article  ADS  Google Scholar 

  17. M. M. S. Abdel-Mottaleb, M. Van der Auweraer, and M. S. A. Abdel-Mottaleb, “Photostability of J-aggregates adsorbed on TiO2 nanoparticles and AFM imaging of J-aggregates on a glass surface,” Int. J. Photoenergy 6, 208496 (2004). https://doi.org/10.1155/S1110662X04000054

    Article  Google Scholar 

  18. Z. Zhang, M. Cai, C. Bao, Z. Hu, and J. Tian, “Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models,” Nanomed.: Nanotechnol., Biol. Med. 17, 62–70 (2019). https://doi.org/10.1016/j.nano.2018.12.017

    Article  Google Scholar 

  19. D. Farrakhova, Y. Maklygina, I. Romanishkin, D. Yakovlev, A. Plyutinskaya, L. Bezdetnaya, and V. Loschenov, “Fluorescence imaging analysis of distribution of indocyanine green in molecular and nanoform in tumor model,” Photodiagn. Photodyn. Ther. 37, 102636 (2021). https://doi.org/10.1016/j.pdpdt.2021.102636

    Article  Google Scholar 

  20. D. Farrakhova, I. Romanishkin, Yu. Maklygina, L. Bezdetnaya, and V. Loschenov, “Analysis of fluorescence decay kinetics of indocyanine green monomers and aggregates in brain tumor model in vivo,” Nanomaterials 11 (12), 3185 (2021). https://doi.org/10.3390/nano11123185

    Article  Google Scholar 

  21. B. Jung, V. I. Vullev, and B. Anvari, “Revisiting indocyanine green: Effects of serum and physiological temperature on absorption and fluorescence characteristics,” IEEE J. Sel. Top. Quantum Electron. 20 (2), 7000409 (2014). https://doi.org/10.1109/JSTQE.2013.2278674

    Article  Google Scholar 

Download references

Funding

The research was performed within the State Assignment for conducting research under Government contract in 2019–2021 (theme no. 0723-2020-0035 “New phenomena in interaction of laser radiation, plasma, and particle and radiation fluxes with condensed matter as a basis of innovative technologies”) and supported in part by the Russian Foundation for Basic Research, project no. 18-29-01062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Farrakhova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrakhova, D.S., Romanishkin, I.D., Yakovlev, D.V. et al. The Spectroscopic Study of Indocyanine Green J-Aggregate Stability in Human Blood and Plasma. Phys. Wave Phen. 30, 86–90 (2022). https://doi.org/10.3103/S1541308X22020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22020029

Keywords:

Navigation