Skip to main content
Log in

Influence of Temperature on Corrosion Behavior of 90/10 Cu–Ni Alloys in Sulfide-Polluted Chloride Solutions

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Hydrogen sulfide is a corrosive species responsible for the deterioration of metals and alloys in marine environment. In this study, the electrochemical performance of the 90/10 Cu–Ni alloy in stagnant and aerated 3.5% sodium chloride (equivalent chloride concentration in seawater) containing 0.01 M Na2S was investigated using potentiodynamic polarization technique at 23, 50, and 80°C. The surface examination and morphological studies were also employed. Polarization measurements in sulfide-infested environments revealed that 90/10 Cu–Ni alloys are adversely sensitive to the sulfide presence and exhibit very high corrosion rates at higher electrolyte temperatures in accordance with an exponential fashion. In addition, the confirmation of a corrosion attack evidencing a pitting type corrosion appearing after the metallographic characterization was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Radford-Knoery, J. and Cutter, G., Biogeochemistry of dissolved hydrogen sulfide species and carbonyl sulfide in western North-Atlantic Ocean, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 24, p. 5421. https://doi.org/10.1016/0016-7037(94)90239-9

    Article  Google Scholar 

  2. Luther III, G.W. and Tsamakis, E., Concentration and form of dissolved sulfide in the oxic water column of the ocean, Mar. Chem., 1989, vol. 27, nos. 3–4, p. 165. https://doi.org/10.1016/0304-4203(89)90046-7

    Article  Google Scholar 

  3. Chen, K. and Morris, J., Kinetics of oxidation of aqueous sulfide by O2, Environ. Sci. Technol., 1972, vol. 6, no. 6, p. 529. https://doi.org/10.1021/es60065a008

    Article  Google Scholar 

  4. Kuhn, A., Chana, M., and Kelsall, G., A review of the air oxidation of aqueous sulphide solutions, J. Chem. Tech. Biotechnol., 1983, vol. 33, p. 406.

    Article  Google Scholar 

  5. Ezuber, H.M. and Newman, R.C., Pitting of Fe-15 Cr-10 Ni in free chloride solutions, Proc. Eur. Corros. Congress EUROCORR’97, September 22–25, 1997, Trondheim, Norway, 1997, vol. 1, p. 401.

  6. Kip, N. and van Veen, J., The dual role of microbes in corrosion, ISME J., 2015, vol. 9, p. 542. https://doi.org/10.1038/ismej.2014.169

    Article  Google Scholar 

  7. Tuthill, A., Guidelines for use of copper alloys in seawater, Mater. Perform., 1987, vol. 26, p. 12.

    Google Scholar 

  8. Powell, C. and Michels, H., Copper-nickel alloys for seawater corrosion resistance and antifouling—A state of art review, Proc. CORROSION Conf., March 26–31, 2000, Orlando, Florida, 2000, p. NACE-00627.

  9. Mansfeld, F. and Little, B., Microbiologically influenced corrosion of copper-based materials exposed to natural seawater, Electrochim. Acta, 1992, vol. 37, p. 2291.

    Article  Google Scholar 

  10. Todd, B., The corrosion of materials in desalination plants, Desalination, 1967, vol. 3, p. 106.

    Article  Google Scholar 

  11. Sedricks, A., Advanced materials in marine environments, Mater. Perform., 1994, vol. 33, p. 56.

    Google Scholar 

  12. Popplewell, J.M., Hart, R.J., and Ford, J.A., The effect of iron on the corrosion characteristics of 90–10 cupro nickel in quiescent 3.4% NaCl solution, Corros. Sci., 1973, vol. 13, no. 4, p. 295. https://doi.org/10.1016/0010-938X(73)90007-3

    Article  Google Scholar 

  13. Kear, G., Barker, B., Stokes, K., and Walsh, F., Electrochemical corrosion behaviour of 90–10 Cu–Ni alloy in chloride-based electrolytes, J. Appl. Electrochem., 2004, vol. 34, p. 659.

    Article  Google Scholar 

  14. Zhang, Y., Zheng, M., and Zhu, J., Corrosion behavior of copper with minor alloying addition in chloride solution, J. Alloys Compd., 2008, vol. 462, p. 240.

    Article  Google Scholar 

  15. Blundy, R. and Pryor, M., The potential dependence of reaction product composition on copper–nickel alloys, Corros. Sci., 1972, vol. 12, p. 65.

    Article  Google Scholar 

  16. Druska, P., Strehblow, H., and Golledge, S., A surface analytical examination of passive layers on Cu-Ni alloys: Part I. Alkaline solution, Corros. Sci., 1996, vol. 38, p. 835.

    Article  Google Scholar 

  17. Barbucci, A., Farne, G., Matteazzi, P., Riccieri, R., et al., Corrosion behaviour of nanocrystalline Cu90Ni10 alloy in neutral solution containing chlorides, Corros. Sci., 1998, vol. 41, p. 463.

    Article  Google Scholar 

  18. Ezuber, H., Effect of temperature and thiosulphate on the corrosion behaviour of 90–10 copper–nickel alloys in seawater, Anti-Corros. Meth. Mater., 2009, vol. 56, p. 168.

    Article  Google Scholar 

  19. Al-Hajji, J. and Reda, M., The corrosion of copper-nickel alloys in sulfide-polluted seawater: The effect of sulfide concentration, Corros. Sci., 1993, vol. 34, p. 163.

    Article  Google Scholar 

  20. Ezuber H. and Al Shatter, A., Influence of environmental parameters on the corrosion behavior of 90/10 cupronickel tubes in 3.5% NaCl, Desalin. Water Treat., 2016, vol. 57, p. 6670.

    Article  Google Scholar 

  21. Appa Rao, B.V. and Chaitanya Kumar, K., 5-(3-Aminophenyl) tetrazole—A new corrosion inhibitor for Cu–Ni (90/10) alloy in seawater and sulphide containing seawater, Arab. J. Chem., 2017, vol. 10, no. 2, p. S2245. https://doi.org/10.1016/j.arabjc.2013.07.060

    Article  Google Scholar 

  22. Khadom, A., Yaro, A., and Khadum, A., Corrosion inhibition by naphthylamine and phenylenediamine for the corrosion of copper–nickel alloy in hydrochloric acid, J. Taiwan Inst. Chem. Eng., 2010, vol. 41, p. 122.

    Article  Google Scholar 

  23. Schrader, M., Auger electron spectroscopic study of mechanism of sulfide-accelerated corrosion of copper–nickel alloy in seawater, Appl. Surf. Sci., 1982, vol. 10, p. 431.

    Article  Google Scholar 

  24. Eliselstein, L., Syrett, B., Wing, S., and Caligiuri, R., The accelerated corrosion of Cu–Ni alloys in sulphide-polluted seawater: Mechanism no. 2, Corros. Sci., 1983, vol. 23, p. 223.

    Article  Google Scholar 

  25. Zubeir, H., The role of iron content on the corrosion behavior of 90Cu–10Ni alloys in 3.5% NaCl solutions, Anti-Corros. Meth. Mater., 2012, vol. 59, p. 195.

    Article  Google Scholar 

  26. El Din, A., Copper alloys for desalination plants, Desalination, 1993, vol. 93, p. 499.

    Article  Google Scholar 

  27. Yuan, S. and Pehkonen, S., Surface characterization and corrosion behavior of 70/30 Cu–Ni alloy in pristine and sulfide-containing simulated seawater, Corros. Sci., 2007, vol. 49, p. 1276.

    Article  Google Scholar 

  28. Syrett, B., The mechanism of accelerated corrosion of copper–nickel alloys in sulphide-polluted seawater, Corros. Sci., 1981, vol. 21, no. 3, p. 187.

    Article  Google Scholar 

  29. Elragei, O., Elshawesh, F. and Ezuber, H.M., Corrosion failure 90/10 cupronickel tubes in a desalination plant, Desalin. Water Treat., 2010, vol. 21, nos. 1–3, p. 17. https://doi.org/10.5004/dwt.2010.1156

    Article  Google Scholar 

  30. Ezuber, H., Al Shatter, A., Murra, F., and Al Shamri, N., Corrosion behavior of copper–nickel alloys in seawater environment, 16th Middle East Corrosion Conf. and Exhibit., Bahrain, Feb. 7–10, 2016, p. NACE MECCFEB16-8103.

  31. Burleigh, T. and Waldeck, D., Effect of alloying on the resistance of Cu–10% Ni alloys to seawater impingement, Corrosion, 1999, vol. 55, p. 800.

    Article  Google Scholar 

  32. Lo, S., Gibbon, W., and Hollingshead, R., Corrosion resistance enhancement of marine alloys by rapid solidification, J. Mater. Sci., 1987, vol. 22, p. 3293.

    Article  Google Scholar 

  33. Pearson, C., Role of iron in the inhibition of corrosion of marine heat exchangers, a review, Brit. Corros. J., 1972, vol. 7, p. 61.

    Article  Google Scholar 

  34. Mansfeld, F., Polarization resistance measurements—experimental procedures and evaluation of testing data, in Electrochemical Techniques for Corrosion Engineering, Baboian, R., Ed., Houston, TX: NACE, 1977, p. 18.

    Google Scholar 

  35. Crousier, J., Pardessus, L., and Crousier, J.-P., Voltammetry study of copper in chloride solution, Electrochim. Acta, 1988, vol. 33, p. 1039.

    Article  Google Scholar 

  36. Sutter, E., Millet, B., Fiaud, C., and Lincot, D., Some new photoelectrochemical insights in the corrosion-passivation processes of copper in aqueous chloride solution under open-circuit conditions, J. Electroanal. Chem., 1995, vol. 386, p. 101.

    Article  Google Scholar 

  37. Ferreira, J.P., Rodrigues, J.A., and da Fonseca, I.T.E., Copper corrosion in buffered and non-buffered synthetic seawater: A comparative study, J. Solid State Electrochem., 2004, vol. 8, p. 260.

    Article  Google Scholar 

  38. Cicileo, G., Rosales, B., Varela, F., and Vilche, J., Inhibitory action of 8-hydroxyquinoline on the copper corrosion process, Corros. Sci., 1998, vol. 40, p. 1915.

    Article  Google Scholar 

  39. Macdonald, D., Syrett, B., and Wing, S., The corrosion of Cu–Ni alloys 706 and 715 in flowing sea water. II—Effect of dissolved sulfide, Corrosion, 1979, vol. 35, no. 8, p. 367. https://doi.org/10.5006/0010-9312-35.8.367

    Article  Google Scholar 

  40. Habib, K., Electrochemical behavior of copper–nickel alloys in sulphide polluted seawater at moderate temperatures, Desalination, 1992, vol. 89, p. 41.

    Article  Google Scholar 

  41. Mao, F., Dong, C., Sharifi-Asl, S., Lu, P., et al., Passivity breakdown on copper: Influence of chloride ion, Electrochim. Acta, 2014, vol. 144, p. 391. https://doi.org/10.1016/j.electacta.2014.07.160

    Article  Google Scholar 

  42. Syrett, B.C. and Macdonald, D.D., The validity of electrochemical methods for measuring corrosion rates of copper-nickel alloys in sea water, Corrosion, 1979, vol. 35, no. 11, p. 505. https://doi.org/10.5006/0010-9312-35.11.505

    Article  Google Scholar 

  43. Zhang, J. and Millero, F., The products from the oxidation of H2S in seawater, Geochim. Cosmochim. Acta, 1993, vol. 57, p. 1705.

    Article  Google Scholar 

  44. Cline, J. and Richards, F., Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature and pH, Environ. Sci. Technol., 1969, vol. 3, p. 838.

    Article  Google Scholar 

  45. Almgren, T. and Hagström, I., The oxidation rate of sulphide in sea water, Water Res., 1974, vol. 8, p. 395.

    Article  Google Scholar 

  46. Sayed, S., Ashour, E., and Youssef, G., Effect of sulfide ions on the corrosion behaviour of Al–brass and Cu10Ni alloys in salt water, Mater. Chem. Phys., 2003, vol. 78, p. 825.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosni M. A. Ezuber.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosni M. A. Ezuber, Abdulla Al-Shater Influence of Temperature on Corrosion Behavior of 90/10 Cu–Ni Alloys in Sulfide-Polluted Chloride Solutions. Surf. Engin. Appl.Electrochem. 59, 185–191 (2023). https://doi.org/10.3103/S1068375523020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523020072

Keywords:

Navigation