Skip to main content
Log in

Electrochemical Phase Formation in Metals under Low Force: Part 1. Increase in the Density of Electrodeposits

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The existence of the phenomenon of the electrochemical phase formation in metals and alloys via a supercooled liquid state stage is further discussed. In order to experimentally verify the existence of the phenomenon in point, the density of metal deposits subjected to the action of a centrifugal force applied perpendicular to the crystallization front during the electrodeposition process was studied. For this purpose, an installation and electrochemical cells were developed and manufactured, which ensures of metals electrodeposition under the conditions of a low force impact, in the field of a centrifugal force, in particular. The performed experiments identified the effect of an increase in the density of metal deposits under a low force superimposed perpendicular to the crystallization front during the electrochemical phase formation. This effect was confirmed by a decrease in porosity and a decline in the intensity of the X-ray diffraction maxima from the metal electrodeposits obtained under the impact of the conditions mentioned above. The identified effect is another proof for the existence of the phenomenon under discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhang, S. and Kobayashi, S., Multilayering process of electrodeposited nanocrystalline iron–nickel alloys for further strengthening, J. Mater. Sci., 2020, vol. 55, p. 5627. https://doi.org/10.1007/s10853-020-04378-z

    Article  Google Scholar 

  2. Shakoor, R.A., Waware, U.S., Ali, K., Kahraman, R., et al., Novel electrodeposited Ni–B/Y2O3 composite coatings with improved properties, Coatings, 2017, vol. 7, no. 10, p. 161. https://doi.org/10.3390/coatings7100161

    Article  Google Scholar 

  3. Yoo, E., Samardak, A.Y., Jeon, Y.S., Samardak, A.S., et al., Composition-driven crystal structure transformation and magnetic properties of electrodeposited Co–W alloy nanowires, J. Alloys Compd., 2020, vol. 843, ID 155902. https://doi.org/10.1016/j.jallcom.2020.155902

  4. Merchant, H.D. and Girin, O.B., Defect structure and crystallographic texture of polycrystalline electrodeposits, in MRS Symposium “Electrochemical Synthesis and Modification of Materials”, Andricacos, P.C., Corcoran, S.G., Delplancke, J.-L., Moffat, T.P., and Searson, P.C., Eds., Pittsburgh: MRS, 1997, vol. 451, p. 433. https://doi.org/10.1557/PROC-451-433

  5. Guo, F., Yu, X., and Wang, M., The dependence and evolution mechanism of surface structure of electrodeposited Ni films on wettability, J. Electrochem. Soc., 2020, vol. 167, ID 063506. https://doi.org/10.1149/1945-7111/ab8648

  6. Sultana, U.K. and O’Mullane, A.P., Electrochemical formation of amorphous molybdenum phosphosulfide for enabling the hydrogen evolution reaction in alkaline and acidic media, ACS Appl. Energy Mater., 2018, vol. 1, no. 6, p. 2849. https://doi.org/10.1021/acsaem.8b00489

    Article  Google Scholar 

  7. Saveed, M.A., Herd, T., and O’Mullane, A.P., Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction, J. Mater. Chem. A, 2016, vol. 4, no. 3, p. 991. https://doi.org/10.1039/C5TA09125J

    Article  Google Scholar 

  8. Danilov, F.I., Girin, O.B., Popov, E.R., and Demina, M.N., Corrosion properties and structure of electrolytic coatings with chromium and Cr–Fe alloys, Zashchita Met., 1993, vol. 29, no. 6, p. 942. https://inis.iaea.org/search/search.aspx?orig_q=RN: 26036573

  9. Isaev, V.A., Grishenkova, O.V., and Zaikov, Y.P., Theoretical aspects of 2D electrochemical phase formation, J. Solid State Electrochem., 2021, vol. 25, p. 689. https://doi.org/10.1007/s10008-020-04847-0

    Article  Google Scholar 

  10. Milchev, A., Electrochemical formation and growth of a new phase: what to do next?, J. Solid State Electrochem., 2020, vol. 24, p. 2143. https://doi.org/10.1007/s10008-020-04736-6

    Article  Google Scholar 

  11. Tsakova, V., Theory of electrochemical nucleation and growth—revisited?, J. Solid State Electrochem., 2020, vol. 24, p. 2183. https://doi.org/10.1007/s10008-020-04676-1

    Article  Google Scholar 

  12. Isaev, V.A., Grishenkova, O.V., and Zaykov, Y.P., Theoretical modeling of electrochemical nucleation and growth of a single metal nanocluster on a nanoelectrode, RSC Adv., 2020, vol. 10, no. 12, p. 6979. https://doi.org/10.1039/D0RA00608D

    Article  Google Scholar 

  13. Brankovic, S.R., Fundamentals of metal deposition via surface limited redox replacement of under potentially-deposited monolayer, Electrochem. Soc. Interface, 2018, vol. 27, no. 2, p. 57. https://ecnfg.ece.uh.edu/wp-content/uploads/57.pdf.

    Article  Google Scholar 

  14. Zhou, X., Wang, Y., Liang, Z., and Jin, H., Electrochemical deposition and nucleation/growth mechanism of Ni–Co–Y2O3 multiple coatings, Materials, 2018, vol. 11, no. 7, p. 1124. https://doi.org/10.3390/ma11071124

    Article  Google Scholar 

  15. Sides, W.D. and Huang, Q., Electrochemical nucleation and growth of antimony telluride binary compound on gold substrate, J. Electrochem. Soc., 2018, vol. 165, no. 11, p. D568. https://doi.org/10.1149/2.1011811jes

    Article  Google Scholar 

  16. Kong, D., Zheng, Z., Meng, F., Li, N., et al., Electrochemical nucleation and growth of cobalt from methanesulfonic acid electrolyte, J. Electrochem. Soc., 2018, vol. 165, no. 16, p. D783. https://doi.org/10.1149/2.0191816jes

    Article  Google Scholar 

  17. Isaev, V.A., Grishenkova, O.V., and Zaykov, Y.P., On the theory of 3D multiple nucleation with kinetic controlled growth, J. Electroanal. Chem., 2018, vol. 818, p. 265. https://doi.org/10.1016/j.jelechem.2018.04.051

    Article  Google Scholar 

  18. Romero-Romo, M., Aldana-González, J., Botello, L.E., Montes de Oca, M.G., et al., Electrochemical nucleation and growth of Cu onto Au nanoparticles supported on a Si (111) wafer electrode, J. Electroanal. Chem., 2017, vol. 791, p. 1. https://doi.org/10.1016/j.jelechem.2017.03.003

    Article  Google Scholar 

  19. Nath, P., Pandey, R., Das, A., and Mallik, A., Effect of deposition potential and copper concentration on the phase transformation mechanism and structural distribution during electrodeposition of Ni–Cu magnetic alloy thin films, Met. Mater., 2017, vol. 55, no. 4, p. 255. https://doi.org/10.4149/km_2017_4_255

    Article  Google Scholar 

  20. Milchev, A., Electrochemical phase formation: classical and atomistic theoretical models, Nanoscale, 2016, vol. 8, no. 29, p. 13867. https://doi.org/10.1039/C6NR02354A

    Article  Google Scholar 

  21. Staikov, G., Nanoscale electrodeposition of low-dimensional metal phases and clusters, Nanoscale, 2016, vol. 8, no. 29, p. 13880. https://doi.org/10.1039/C6NR01547F

    Article  Google Scholar 

  22. Chen, J., Luo, S., Liu, Y., and Chen, S., Theoretical analysis of electrochemical formation and phase transition of oxygenated adsorbates on Pt (111), ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 31, p. 20448. https://doi.org/10.1021/acsami.6b04545

    Article  Google Scholar 

  23. Milchev, A., Nucleation phenomena in electrochemical systems: Kinetic models, Chem. Texts, 2016, vol. 2, no. 4, p. 1. https://doi.org/10.1007/s40828-015-0021-1

    Article  Google Scholar 

  24. Ren, P., Deng, H.Y., Zhang, J.X., and Dai, N., Nucleation mechanism and microstructural analysis of Zn films on Mo substrates by electrodeposition, J. Electrochem. Soc., 2016, vol. 163, no. 7, p. D309. https://doi.org/10.1149/2.0981607jes

    Article  Google Scholar 

  25. Isaev, V.A. and Grishenkova, O.V., Galvanostatic phase formation, J. Solid State Electrochem., 2014, vol. 18, no. 9, p. 2383. https://doi.org/10.1007/s10008-014-2489-9

    Article  Google Scholar 

  26. Torrent-Burgues, J., Electrochemical nucleation: Comparison test of classical and atomistic nucleation models, J. Solid State Electrochem., 2013, vol. 17, no. 2, p. 373. https://doi.org/10.1007/s10008-012-1872-7

    Article  Google Scholar 

  27. Milchev, A., Electrochemical phase formation: Some fundamental concepts, J. Solid State Electrochem., 2011, vol. 15, no. 7, p. 1401. https://doi.org/10.1007/s10008-011-1368-x

    Article  Google Scholar 

  28. Girin, O.B. and Vorob’ev, G.M., Natural change in mosaic structure of electrodeposited metals with increase of their atomic nucleus charge, Zh. Vses. Khim. O-va. im. D.I. Mendeleeva, 1986, vol. 31, no. 5, p. 592.

    Google Scholar 

  29. Girin, O.B. and Vorob’ev, G.M., Mechanism of structure formation in electrolytic coatings, Russ. Metall. Met., 1987, no. 4, p. 148.

  30. Girin, O.B. and Vorob’ev, G.M., Change of X-ray diffraction, scattered by metals during their electrolytic deposition, Zh. Fiz. Khim., 1988, vol. 62, no. 5, p. 1347.

    Google Scholar 

  31. Girin, O.B., Substructure formation and texture in electrodeposits, J. Electron. Mater., 1995, vol. 24, no. 8, p. 947. https://doi.org/10.1007/BF02652966

    Article  Google Scholar 

  32. Girin, O.B. and Khlyntsev, V.P., Mechanism of liquid phase formation in metals during electrodeposition, Elektron. Obrab. Mater., 2000, no. 3, p. 13.

  33. Girin, O.B., Phase transformations in the metallic materials being electrodeposited and their application for the development of advanced technologies for anticorrosive protection of canned-food steel sheet, Mater. Sci. Forum, 2007, vols. 561–565, p. 2369. https://doi.org/10.4028/www.scientific.net/MSF.561-565.2369

  34. Girin, O.B., Phase and structure formation of metallic materials electrodeposited via a liquid state stage: New experimental proof, Defect Diffus. Forum, 2010, vols. 303–304, p. 99. https://doi.org/10.4028/www.scientific.net/DDF.303-304.99

  35. Girin, O.B., Further evidence of phase formation through a liquid state stage in metals being electrodeposited: Part 1, Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 2, p. 137. https://doi.org/10.3103/S1068375517020041

    Article  Google Scholar 

  36. Girin, O.B., Further evidence of phase formation through a liquid state stage in metals being electrodeposited: Part 2, Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 3, p. 233. https://doi.org/10.3103/S1068375517030048

    Article  Google Scholar 

  37. Girin, O.B., Further evidence of phase formation through a liquid state stage in metals being electrodeposited: Part 3, Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 4, p. 339. https://doi.org/10.3103/S1068375517040056

    Article  Google Scholar 

  38. Ustarroz, J., Current atomic-level understanding of electrochemical nucleation and growth on low-energy surfaces, Curr. Opin. Electrochem., 2020, vol. 19, p. 144. https://doi.org/10.1016/j.coelec.2019.12.001

    Article  Google Scholar 

  39. Altimari, P., Greco, F., and Pagnanelli, F., Nucleation and growth of metal nanoparticles on a planar electrode: A new model based on iso-nucleation-time classes of particles, Electrochim. Acta, 2019, vol. 296, p. 82. https://doi.org/10.1016/j.electacta.2018.10.198

    Article  Google Scholar 

  40. Mladenova, E. and Milchev, A., Electrochemical nucleation and growth of three-dimensional clusters: The case of multi-step ions discharge, J. Solid State Electrochem., 2017, vol. 21, no. 6, p. 1599. https://doi.org/10.1007/s10008-017-3511-9

    Article  Google Scholar 

  41. Mladenova, E., Burdin, B., and Milchev, A., Electrochemical nucleation and growth of three-dimensional clusters: The case of multi-step ion discharge-II, J. Solid State Electrochem., 2017, vol. 21, no. 6, p. 1567. https://doi.org/10.1007/s10008-017-3519-1

    Article  Google Scholar 

  42. Sebastian, P., Botello, L.E., Valles, E., Gomez, E., et al., Three-dimensional nucleation with diffusion controlled growth: A comparative study of electrochemical phase formation from aqueous and deep eutectic solvents, J. Electroanal. Chem., 2017, vol. 793, p. 119. https://doi.org/10.1016/j.jelechem.2016.12.014

    Article  Google Scholar 

  43. Mamme, M.H., Deconinck, J., and Ustarroz, J., Transition between kinetic and diffusion control during the initial stages of electrochemical growth using numerical modelling, Electrochim. Acta, 2017, vol. 258, p. 662. https://doi.org/10.1016/j.electacta.2017.11.111

    Article  Google Scholar 

  44. Ustarroz, J., Hubin, A., and Terryn, H., New insights in nanoelectrodeposition: An electrochemical aggregative growth mechanism, in Handbook of Nanoelectrochemistry, Aliofkhazraei, M. and Makhlouf, A., Eds., Cham: Springer, 2016, p. 1349. https://doi.org/10.1007/978-3-319-15266-0_10

    Book  Google Scholar 

  45. Altimari, P. and Pagnanelli, F., Electrochemical nucleation and three-dimensional growth under mixed kinetic-diffusion control: Analytical approximation of the current transient, Electrochim. Acta, 2016, vol. 205, p. 113. https://doi.org/10.1016/j.electacta.2016.04.093

    Article  Google Scholar 

  46. Altimari, P. and Pagnanelli, F., Electrochemical nucleation and three-dimensional growth of metal nanoparticles under mixed kinetic-diffusion control: Model development and validation, Electrochim. Acta, 2016, vol. 206, p. 116. https://doi.org/10.1016/j.electacta.2016.04.094

    Article  Google Scholar 

  47. Girin, O.B., Electrochemical amorphous phase formation in metals, J. Chem. Technol. Metall., 2019, vol. 54, no. 2, p. 391. https://dl.uctm.edu/journal/node/j2019-2/18_18-74_p391%20-%20396.pdf.

    Google Scholar 

  48. Girin, O.B., Ovcharenko, V.I., and Korolyanchuk, D.G., Features of texture formation in polymorphic metals being electrodeposited, Acta Metall. Slovaca, 2019, vol. 25, no. 4, p. 267. https://doi.org/10.12776/ams.v25i4.1357

    Article  Google Scholar 

  49. Girin, O.B. and Korolyanchuk, D.G., Electrochemical reduction of ions in metals/alloys at a liquid cathode versus a solid chemically identical one, Sci. Study Res.: Chem. Chem. Eng., Biotechnol., Food Ind., 2019, vol. 20, no. 4, p. 639. http://pubs.ub.ro/?pg=revues&rev=cscc6&num=201904&vol=4&aid=4962.

    Google Scholar 

  50. Girin, O.B. and Korolyanchuk, D.G., Electro-chemical phase formation of metals and alloys at chemically identical solid or liquid cathode: Part 1. Metals, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 1, p. 28. https://doi.org/10.3103/S1068375520010068

    Article  Google Scholar 

  51. Girin, O.B. and Korolyanchuk, D.G., Electrochemical phase formation of metals and alloys at chemically identical solid or liquid cathode: Part 2. Alloys in the form of substitutional solid solutions, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 3, p. 289. https://doi.org/10.3103/S1068375520030059

    Article  Google Scholar 

  52. Girin, O.B. and Korolyanchuk, D.G., Electro-chemical phase formation of metals and alloys at chemically identical solid or liquid cathode: Part 3. Alloys in the form of intermetallic compounds, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 4, p. 501. https://doi.org/10.3103/S1068375520040067

    Article  Google Scholar 

  53. Girin, O., Kuzyayev, I., Nikolsky, V., and Yaris V., Discovering and modelling the wave-like shapes on the surface of metal deposits, being electrodeposited under the force impact, Key Eng. Mater., 2020, vol. 844, p. 135. https://doi.org/10.4028/www.scientific.net/KEM.844.135

  54. Ohno, A., The Solidification of Metals, Tokyo: Chijin Shokan, 1976.

    Google Scholar 

  55. Campbell, J., Casting Handbook: Metal Casting Processes, Techniques and Design, Amsterdam: Elsevier, 2015, 2nd ed.

    Google Scholar 

  56. Lerner, Y. and Rao, P.N., Metalcasting Principles and Techniques, Schaumburg: American Foundry Society, 2013.

    Google Scholar 

  57. Girin, O.B. and Zakharov, I.D., Increase in the density of electrodeposited metals under the action of centrifugal force, Vost.-Evr. Zh. Pered. Tekhnol., 2011, vol. 5, no. 5(53), p. 4.

  58. Gamburg, Yu.D. and Zangari, G., Theory and Practice of Metal Electrodeposition, New York: Springer-Verlag, 2011.

    Book  Google Scholar 

  59. Plieth, W., Electrochemistry for Materials Science, Amsterdam: Elsevier, 2008.

    Google Scholar 

  60. Stout, G.H. and Jensen, L.H., X-ray Structure Determination: A Practical Guide, Hoboken: Wiley-Interscience, 1989, 2nd ed.

    Google Scholar 

  61. Als-Nielsen, J. and McMorrow, D., Elements of Modern X-ray Physics, Hoboken: John Wiley & Sons, 2011, 2nd ed.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Girin.

Ethics declarations

The author declares he has have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girin, O.B. Electrochemical Phase Formation in Metals under Low Force: Part 1. Increase in the Density of Electrodeposits. Surf. Engin. Appl.Electrochem. 58, 221–230 (2022). https://doi.org/10.3103/S1068375522030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522030085

Keywords:

Navigation