Skip to main content
Log in

Photoelectrochemical and Electrocatalytic Behaviors of TiO2 Nanostructures and TiO2−Au Nanocomposites: Effect of Synthesis Conditions

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mesoporous TiO2 nanostructures and TiO2−Au nanocomposites with stabilized Au nanoparticles are synthesized by the template sol-gel process. The effects of synthesis conditions on the particle size, electronic structure, morphology, composition, and texture of prepared materials are determined. TiO2- and TiO2−Au-based electrodes are shown to be photoactive in the wavelength range of 250–412 nm and in the methylene blue (MB) photodecomposition and feature high catalytic activity in an oxygen electroreduction reaction. The presence of hydroxyl and carboxylate groups in the amorphous phase is the key factor affecting the photosensitivity of our TiO2 nanostructures and contributing to enhancement of their photoactivity in the MB photodecomposition reaction. Due to their catalytic activity and consistent performance in the oxygen electroreduction reaction, the TiO2 nanostructures and TiO2−Au nanocomposites can be considered as promising materials for use in electrochemical oxygen sensors with application to aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Chen, X. and Mao, S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 2007, vol. 107, p. 2891.

    Google Scholar 

  2. Etacheri, V., Valentin, C.D., Schneider, J., Bahnemann, D., et al., Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol. C, 2015, vol. 25, p. 1.

    Google Scholar 

  3. Nicholas, M.P., Nolan, T., Pillai, S.C., Seery, M.K., et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B. 2012, vol. 125, p. 331.

    Google Scholar 

  4. Nakata, K. and Fujishima, A., TiO2 photocatalysis: design and applications, J. Photochem. Photobiol. C, 2012, vol. 13, p. 169.

    Google Scholar 

  5. Kumar, S.G. and Devi, L.G., Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 2011, vol. 115, p. 13211.

    Google Scholar 

  6. Islam, S.Z., Nagpure, S., Kim, D.Y., and Rankin, S.E., Synthesis and catalytic applications of non-metal doped mesoporous titania, Inorganics, 2017, vol. 5, p. 1.

    Google Scholar 

  7. Fröschl, T., Hörmann, U., Kubiak, P., Kučerová, G., et al., High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis, Chem. Soc. Rev., 2012, vol. 41, p. 5313.

    Google Scholar 

  8. Akpan, G. and Hameed, B.H., The advancements in sol-gel method of doped-TiO2 photocatalysts, Appl. Catal., A, 2010, vol. 375, p. 1.

  9. Kumar, A. and Pandey, G., Different methods used for the synthesis of TiO2 based nanomaterials: a review, Am. J. Nano Res. Appl., 2018, vol. 6, p. 1.

    Google Scholar 

  10. Tian, H., Ma, J., Li, K., and Li, J., Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange, Ceram. Int., 2009, vol. 35, p. 1289.

    Google Scholar 

  11. Tseng, T.K., Lin, Y.S., Chen, Y.J., and Chu, H., A review of photocatalysts prepared by sol-gel method for VOCs removal, Int. J. Mol. Sci., 2010, vol. 11, no. 6, p. 2336.

    Google Scholar 

  12. Zhang, W., Zou, L., Lewis, R., and Dionysio, D., A review of visible-light sensitive TiO2 synthesis via sol-gel N-doping for the degradation of dissolved organic compounds in wastewater treatment, J. Mater. Sci. Chem. Eng., 2014, vol. 2, p. 28.

    Google Scholar 

  13. Mital, G.S. and Manoj, T., A review of TiO2 nanoparticles, Chin. Sci. Bull., 2011, vol. 56, p. 1639.

    Google Scholar 

  14. Huang, F., Yan, A., and Zhao, H., Influences of doping on photocatalytic properties of TiO2 photocatalyst, in Semiconductor Photocatalysis: Materials, Mechanisms and Applications, London: InTechOpen, 2016, ch. 2, p. 31.

  15. Di Valentin, C. and Pacchioni, G., Trends in non-metal doping of anatase TiO2: B, C, N and F, Catal. Today, 2013, vol. 206, p. 12.

    Google Scholar 

  16. Seery, M.K., George, R., Floris, P., and Pillai, S.C., Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A, 2007, vol. 189, p. 258.

    Google Scholar 

  17. Rahulan, K.M., Ganesan, S., and Aruna, P., Synthesis and optical limiting studies of Au-doped TiO2 nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol., 2011, vol. 2, p. 25012.

    Google Scholar 

  18. Taing, J., Cheng, M.H., and Hemminger, J.C., Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG, ACS Nano, 2011, vol. 5, p. 6325.

    Google Scholar 

  19. Sakthivel, S., Shankar, M.V., Palanichamy, M., Arabindoo, B., et al., Enhancement of photocatalytic activity by metal deposition: Characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res., 2004, vol. 38, p. 3001.

    Google Scholar 

  20. Muruganandham, M. and Swaminathan, M., Solar photocatalytic degradation of a reactive Azo Dye in TiO2-suspension, Sol. Energy Mater. Sol. Cells, 2004, vol. 81, p. 439.

    Google Scholar 

  21. Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., et al., A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc., 2008, vol. 130, p. 1676.

    Google Scholar 

  22. Atwater, H.A. and Polman, A., Plasmonics for improved photovoltaic devices, Nat. Mater., 2010, vol. 9, p. 205.

    Google Scholar 

  23. Standridge, S.D., Schatz, G.C., and Hupp, J.T., Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells, J. Am. Chem. Soc., 2009, vol. 131, p. 8407.

    Google Scholar 

  24. Takai, A. and Kamat, P.V., Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface, ACS Nano, 2011, vol. 5, p. 7369.

    Google Scholar 

  25. Bamwenda, G.R., Tsubota, S., Nakamura, T., and Haruta, M., Photoassisted hydrogen production from a water-ethanol solution: A comparison of activities of Au/TiO2 and Pt/TiO2, J. Photochem. Photobiol. A, 1995, vol. 89, p. 177.

    Google Scholar 

  26. Phan, T.L., Zhang, P., Tran, H.D., and Yu, S.C., Electron spin resonance study of Mn-doped metal oxides annealed at different temperatures, J. Korean Phys. Soc., 2010, vol. 57, p. 1270.

    Google Scholar 

  27. Wang, L., Clavero, C., Huba, Z., Carroll, K.J., et al., Plasmonics and enhanced magneto-optics in core-shell Co–Ag nanoparticles, Nano Lett., 2011, vol. 11, p. 1237.

    Google Scholar 

  28. Feng, C.-D., US Patent 6602401, 2003.

  29. Vorobets, V.S., Korduban, A.M., Kolbasov, G.Ya., Blinkova, L.V., et al., Photoelectrochemical properties of TiO2 films obtained by electrical explosion, Theor. Exp. Chem., 2012, vol. 48, p. 38.

    Google Scholar 

  30. Smirnova, N., Vorobets, V., Linnik, O., Manuilov, E., et al., Photoelectrochemical and photocatalytical properties of mesoporous TiO2 films modified with silver and gold nanoparticles, Surf. Interface Anal., 2010, vols. 6–7, p. 1205.

    Google Scholar 

  31. Ermokhina, N.I., Nevinskiy, V.A., Manorik, P.A., Ilyin, V.G., et al., Synthesis and characterization of thermally stable large-pore mesoporous nanocrystalline anatase, J. Solid State Chem., 2013, vol. 200, p. 90.

    Google Scholar 

  32. Periyat, P., Pillai, S.C., McCormack, D.E., Colreavy, J., et al., Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2, J. Phys. Chem. C, 2008, vol. 112, p. 7644.

    Google Scholar 

  33. Tauc, J., Grigorovi, R., and Vancu, A., Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi, 1966, vol. 15, p. 627.

    Google Scholar 

  34. Doeuff, S., Henry, M., and Sanchez, C., Sol-gel synthesis and characterization of titanium oxo-acetate polymers, Mater. Res. Bull., 1990, vol. 25, p. 1519.

    Google Scholar 

  35. Larbot, A., Laaziz, I., Marignan, J., and Quinson, J.F., Porous texture of a titanium oxide gel: Evolution as a function of medium used, J. Non-Cryst. Solids, 1992, vols. 147–148, p. 157.

    Google Scholar 

  36. Hu, G., Ma, D., Cheng, M., Liu, L., et al., Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach, Chem. Commun., 2002, vol. 8, no. 17, p. 1948.

    Google Scholar 

  37. Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., et al., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology, 2008, vol. 19, 145605 (10 p).

  38. Doeuff, S., Dromzee, Y., Taulelle, F., and Sanchez, C., Synthesis and solid- and liquid-state characterization of a hexameric cluster of titanium(IV): Ti62-O)23-O)22-OC4H9)2(OC4H9)6(OCOCH3)8, Inorg. Chem., 1989, vol. 28, p. 4439.

    Google Scholar 

  39. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986, 4th ed.

    Google Scholar 

  40. Doeuff, S., Henry, M., Sanchez, C., and Livage, J., Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid, J. Non-Cryst Solids, 1987, vol. 89, p. 206.

    Google Scholar 

  41. Thiele, K.H. and Panse, M., Beiträge zur Chemie der Alkylverbindungen von Übergangsmetallen. XXVII. Darstellung von Titanacetaten aus Tetramethyl- und Tetrabenzyltitan, Z. Anorg. Allg. Chem., 1978, vol. 441, p. 23.

    Google Scholar 

  42. Bagheri, S., Shameli, K., and Abd Hamid, Sh.B., Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method, J. Chem., 2013, vol. 2013, art. ID 848205. https://doi.org/10.1155/2013/848205

    Article  Google Scholar 

  43. Nakamura, R., Imanishi, A., Murakoshi, K., and Nakato, Y., In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions, J. Am. Chem. Soc., 2003, vol. 125, p. 7443.

    Google Scholar 

  44. Smirnova, N., Petrik, I., Vorobets, V., Kolbasov, G., et al., Sol-gel synthesis, photo-and electrocatalytic properties of mesoporous TiO2 modified with transition metal ions, Nanoscale Res. Lett., 2017, vol. 12, p. 239.

    Google Scholar 

  45. Cushing, S.K., Li, J., Meng, F., Senty, T.R., et al., Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor, J. Am. Chem. Soc., 2012, vol. 134, p. 15033.

    Google Scholar 

  46. Hu, C., Peng, T., Hu, X., Nie, Y., et al., Plasmon-induced photodegradation of toxic pollutants with Ag–AgI/Al2O3 under visible-light irradiation, J. Am. Chem. Soc., 2010, vol. 132, p. 857.

    Google Scholar 

  47. Christopher, P., Ingram, D.B., and Linic, S., Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons, J. Phys. Chem. C, 2010, vol. 114, p. 9173.

    Google Scholar 

  48. Shi, X., Ueno, K., Takabayashi, N., and Misawa, H., Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoisland-loaded titanium dioxide photoelectrode, J. Phys. Chem. C, 2013, vol. 117, p. 2494.

    Google Scholar 

  49. Furube, A., Du, L., Hara, K., Katoh, R., et al., Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles, J. Am. Chem. Soc., 2007, vol. 129, p. 14852.

    Google Scholar 

  50. Brown, M.D., Suteewong, T., Kumar, R.S.S., D’Innocenzo V., et al., Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles, Nano Lett., 2011, vol. 11, p. 438.

    Google Scholar 

  51. Delahay, P., A polarographic method for the indirect determination of polarization curves for oxygen reduction on various metals. II. Application to nine common metals, J. Electrochem. Soc., 1950, vol. 97, p. 205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Vorobets.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanovskaya, N.I., Manorik, P.A., Vorobets, V.S. et al. Photoelectrochemical and Electrocatalytic Behaviors of TiO2 Nanostructures and TiO2−Au Nanocomposites: Effect of Synthesis Conditions. Surf. Engin. Appl.Electrochem. 58, 1–12 (2022). https://doi.org/10.3103/S1068375522010094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522010094

Keywords:

Navigation