Skip to main content
Log in

Investigation into the Structure and Properties of Solders Based on Aluminum and Zinc in the Form of Cast Rods of a Small Cross Section

  • FOUNDRY
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Solders of the Al–Cu–Si system (A34 brand) and Zn–Al–Cu system (Welco52 brand) are investigated. It is found that the A34 solder (Al–28% Cu–6% Si) melts and crystallizes in a narrow temperature range (~18°C). Solidus and liquidus temperatures of the A34 solder are ~508 and ~526°С, respectively. Solders of the Zn–Al–Cu system (Zn–4% Al–2.5% Cu) have an eutectic composition that provides melting and crystallization at a constant temperature of ~389°С. Densities of studied solders in liquid and solid states are investigated. Their values for the solder of the A34 brand are 3.02 and 3.32 g/cm3, respectively, and, for the zinc solder, 6.28 and 6.69 g/cm3. The influence of casting conditions on the structure of cast alloys in the form of rods with a cross-section area of 13, 10, and 5 mm2 is investigated. The main structural components of solder alloys refine with a decrease in the cross-section area. Dendrites of the aluminum-based solid solution and CuAl2 phase refine in the microstructure of the A34 solder. Dendrite sizes of the zinc-based solid solution most noticeably decrease in the zinc solder. The largest castability is characteristic of alloys fabricated from rod solders with a cross section of 5 mm2 for studied gaps in the sampling of 2.0, 1.5, and 1.0 mm. The zinc solder of the eutectic composition has the best castability when compared with the A34 solder: this characteristic for the melt formed from the zinc-based solder rod with a cross section of 5 mm2 and a gap width in the sampling of 2.0 mm is 100% (the melt of the A34 solder formed from the rod of the same cross section has a castability of 98%). The results of experiments on soldering plates made of the AK12 alloy and sheets made of the AMts alloy show the presence of a tight boundary in the “solder–base material” system, as well as the absence of discontinuities in the form of pores and unsoldered regions. An insignificant interpenetration of solder alloys into the base material is observed, especially when soldering cast plates made of the AK12 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Živković, D.T., Kostov, A.I., Janković, I.P., and Stojanović, M.L., Application of high temperature lead-free solder materials in medicine, Metall. Mater. Eng., 2008, vol. 14, no. 4, pp. 271–277.

    Google Scholar 

  2. Zeng, G., McDonald, S., and Nogita, K., Development of high-temperature solders: Review, Microelectron. Reliab., 2012, no. 52, pp. 1306–1322.

  3. Hlavaty, I., Solderabilty of high-purity aluminium with the lead-free solders, Annals of DAAAM for 2011 & Proc. 22nd Int. DAAAM Symp., 2011, vol. 22, no. 1, pp. 817–818.

  4. Kroupa, A., Dinsdale, A., Watson, A., Vřešťal, J.J., Zemanova, A., and Broz, P., The thermodynamic database cost MP0602 for materials for high-temperature lead-free soldering, J. Min. Metall., Sect. B, 2012, vol. 48, no. 3, pp. 339–346.

    Article  Google Scholar 

  5. Petrunin, I.E., Spravochnik po paike (Reference Book for Soldering), Moscow: Mashinostroenie, 2003.

  6. Ponweiser, N. and Richter, K.W., New investigation of phase equilibria in the system Al–Cu–Si, J. Alloys Compd., 2012, vol. 512, no. 1, pp. 252–263.

    Article  Google Scholar 

  7. Altıntas, Y., Aksöz, S., Keşlioĝu, K., and Maras, N., Determination of thermodynamic properties of aluminum based binary and ternary alloys, J. Alloys Compd., 2015, vol. 649, pp. 453–460.

    Article  Google Scholar 

  8. He, C.-Y., Dua, Y., Chena, H.-L., and Xu, H., Experimental investigation and thermodynamic modeling of the Al–Cu–Si system. CALPHAD: Comput. Coupl. Phase Diagr. Thermochem., 2009, vol. 33, pp. 200–210.

    Article  Google Scholar 

  9. Osório, W.R., Peixoto, L.C., Garcia, L.R., Mangelinck-Noël, N., and Garcia, A., Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys, J. Alloys Compd., 2013, vol. 572, pp. 97–106.

    Article  Google Scholar 

  10. Gancarz, T., Pstruś, J., Fima, P., and Mosin’ska, S., Thermal properties and wetting behavior of high temperature Zn–Al–In solders, J. Mater. Eng. Perform., 2012, vol. 21, no. 5, pp. 599–605.

    Article  Google Scholar 

  11. Islam, Md.A. and Sharif, A., Effect of magnesium addition on microstructure and mechanical properties of lead-free zinc-silver solder alloys, Mater. Sci.: Ind. J., 2016, no. 14, pp. 1–8.

  12. Berent, K., Pstruś, J., and Gancarz, T., Thermal and microstructure characterization of Zn–Al–Si alloys and chemical reaction with cu substrate during spreading, J. Mater. Eng. Perform., 2016, vol. 25, no. 8, pp. 3375–3383.

    Article  Google Scholar 

  13. Kim, S.-J., Kim, K.-S., Kim, S.-S., Kang, Ch.-Y., and Suganuma, K., Characteristics of Zn–Al–Cu alloys for high temperature solder application, Mater. Trans., 2008, vol. 49, no. 7, pp. 1531–1536.

    Article  Google Scholar 

  14. Bϋyϋk, U., Engin, S., and Maraşlı, N., Directional solidification of Zn–Al–Cu eutectic alloy by the vertical Bridgman method, J. Min. Metall., Sect. B, 2015, vol. 51, no. 1, pp. 67–72.

    Article  Google Scholar 

  15. Gancarz, T., Pstruś, J., Mosińska, S., and Pawlak, S., Effect of Cu addition to Zn–12Al alloy on thermal properties and wettability on Cu and Al substrates, Metall. Mater. Trans. A, 2016, vol. 47A, pp. 368–377.

    Article  Google Scholar 

  16. Pstruś, J., Fima, P., and Gancarz, T., Wetting of Cu and Al by Sn–Zn and Zn–Al eutectic alloys, J. Mater. Eng. Perform., 2012, vol. 21, no. 5, pp. 606–613.

    Article  Google Scholar 

  17. Nikitin, V.I. and Nikitin, K.V., Nasledstvennost v litykh splavakh (Heredity in Cast Alloys), Moscow: Mashinostroenie-1, 2005.

  18. Krupińska, B., Krupiński, M., Rdzawski, Z., Labisz, K., and Król, M., Characteristic of cast Zn–Al–Cu Alloy microstructure after modification, Arch. Foundry Eng. 2014, vol. 14, no. 4, pp. 77–82.

    Google Scholar 

  19. Krajewski, W.K., Structure and properties of high-aluminium zinc alloys inoculated with Ti addition, Arch. Foundry Eng., 2005, vol. 15, no. 5, pp. 231–240.

    Google Scholar 

  20. Konstantinov, A.N., Chikova, O.A., and Nikitin, K.V., Method for obtaining ingots of the A34 solder based on an investigation into the relation between the structure and properties of liquid and solid metals. Russ. J. Non-Ferrous Met., 2013, vol. 54, no. 6, pp. 484–488.

    Article  Google Scholar 

  21. Nikitin, K.V., Chikova, O.A., Timoshkin, I.Yu., and Konstantinov, A.N., Effect of heating temperature and modification of Al–27% Cu–6% Si melt on the structure and phase composition of crystallized specimens, Met. Sci. Heat Treat., 2013, vol. 55, nos. 3–4, pp. 30–35.

    Google Scholar 

  22. Selyanin, I.F., Deev, V.B., Belov, N.A., Prikhodko, O.G., and Ponomareva, K.V., Physical modifying effects and their influence on the crystallization of casting alloys, Russ. J. Non-Ferrous Met., 2015, vol. 56, no. 4, pp. 434–436.

  23. Nikitin, K.V., Nikitin, V.I., Timoshkin, I.Yu., Krivopalov, D.S., and Chernikov, D.G., Hereditary influence of the structure of charge materials on the density of aluminum alloys of the Al–Si system, Russ. J. Non-Ferrous Met., 2015, vol. 56, no. 1. pp. 20–25.

    Article  Google Scholar 

  24. Nikitin, K.V., Timoshkin, I.Yu., and Nikitin, V.I., RF Patent 131379, 2013.

Download references

ACKNOWLEDGMENTS

This study was supported by the Ministry of Education and Science of the Russian Federation from means assigned to the developmental program of the Samara State Technical University as the Basic University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. V. Nikitin, I. Yu. Timoshkin or V. I. Nikitin.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, K.V., Timoshkin, I.Y. & Nikitin, V.I. Investigation into the Structure and Properties of Solders Based on Aluminum and Zinc in the Form of Cast Rods of a Small Cross Section. Russ. J. Non-ferrous Metals 59, 624–631 (2018). https://doi.org/10.3103/S1067821218060147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218060147

Keywords:

Navigation