Skip to main content
Log in

A Necessary Bayesian Nonparametric Test for Assessing Multivariate Normality

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

A novel Bayesian nonparametric test for assessing multivariate normal models is presented. Although there are extensive frequentist and graphical methods for testing multivariate normality, it is challenging to find Bayesian counterparts. The approach considered in this paper is based on the Dirichlet process and the squared radii of observations. Specifically, the squared radii are employed to transform the \(m\)-variate problem into a univariate problem by relying on the fact that if a random sample is coming from a multivariate normal distribution then the square radii follow a particular beta distribution. While the Dirichlet process is used as a prior on the distribution of the square radii, the concentration of the distribution of the Anderson–Darling distance between the posterior process and the beta distribution is compared to that between the prior process and beta distribution via a relative belief ratio. Key results of the approach are derived. The procedure is illustrated through several examples, in which it shows excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. L. Al-Labadi, Z. Baskurt, and M. Evans, ‘‘Goodness of fit for the logistic regression model using relative belief,’’ Journal of Statistical Distributions and Applications 4, 1 (2017).

    Article  MATH  Google Scholar 

  2. L. Al-Labadi, Z. Baskurt, and M. Evans, ‘‘Statistical reasoning: choosing and checking the ingredients, inferences based on a measure of statistical evidence with some applications,’’ Entropy 20, 289 (2018).

    Article  Google Scholar 

  3. L. Al-Labadi and M. Evans, ‘‘Optimal robustness results for relative belief inferences and the relationship to prior-data conflict,’’ Bayesian Analysis 12, 705–728 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Al-Labadi and M. Evans, ‘‘Prior-based model checking,’’ Canadian Journal of Statistics 46, 380–398 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Al-Labadi and M. Zarepour, ‘‘A Bayesian nonparametric goodness of fit test for right censored data based on approximate samples from the beta-Stacy process,’’ The Canadian Journal of Statistics 41, 466–487 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Al-Labadi, and M. Zarepour, ‘‘Goodness of fit tests based on the distance between the Dirichlet process and its base measure,’’ Journal of Nonparametric Statistics 26, 341–357 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Al-Labadi and M. Zarepour, ‘‘Simulations from the Two-Parameter Poisson-Dirichlet Process and the Normalized Inverse-Gaussian Process,’’ Sankhyā A 76, 158–176 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Al-Labadi and M. Zarepour, ‘‘Two-sample Kolmogorov–Smirnov test using a Bayesian nonparametric approach,’’ Mathematical Methods of Statistics 26, 212–225 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. A. V. Alva and E. G. Estrada, ‘‘A generalization of Shapiro–Wilk’s test for multivariate normality,’’ Communications in Statistics-Theory and Methods 38, 1870–1883 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. W. Anderson and D. A. Darling, ‘‘A test of goodness of fit,’’ Journal of the American Statistical Association 49, 765–769 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. C. Atkinson, M. Riani, and A. Cerioli, Exploring Multivariate Data with the Forward Search (Springer, New York, 2004).

    Book  MATH  Google Scholar 

  12. A. Batsidis, N. Martin, L. Pardo, and K. Zografos, ‘‘A necessary power divergence type family tests of multivariate normality,’’ Communications in Statistics-Simulation and Computation 42, 2253–2271 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Billingsley, Probability and Measure (Wiley, New York, 1995).

    MATH  Google Scholar 

  14. L. Bondesson, ‘‘On simulation from infinitely divisible distributions,’’ Advances in Applied Probability 14, 885–869 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Capiński and E. Kopp, Measure, Integral and Probability, 2nd ed. (Springer, Berlin, 2004).

    Book  MATH  Google Scholar 

  16. I. R. Cardoso de Oliveira and D. F. Ferreira, ‘‘Multivariate extension of chi-squared univariate normality test,’’ Journal of Statistical Computation and Simulation 80, 513–526 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Choi and W. G. Bulgren, ‘‘An estimation procedure for mixtures of distributions,’’ Journal of the Royal Statistical Society, B 30, 444–460 (1988).

    MathSciNet  MATH  Google Scholar 

  18. A. Dasgupta, Asymptotic Theory of Statistics and Probability (Springer, New York, 2008).

    MATH  Google Scholar 

  19. J. Doornik and H. Hansen, ‘‘An omnibus test for univariate and multivariate normality,’’ Oxford Bulletin of Economics and Statistics 70, 927–939 (2008).

    Article  Google Scholar 

  20. R. Dubes and A. K. Jain, ‘‘Clustering methodologies in exploratory data analysis,’’ Advances in Computers 19, 113–228 (1980).

    Article  Google Scholar 

  21. M. Evans, ‘‘Bayesian inference procedures derived via the concept of relative surprise,’’ Communications in Statistics-Theory and Methods 26, 1125–1143 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Evans, Measuring Statistical Evidence Using Relative Belief, Vol. 144: Monographs on Statistics and Applied Probability (CRC Press, Boca Raton, 2015).

  23. M. Evans and H. Moshonov, ‘‘Checking for prior-data conflict,’’ Bayesian Analysis 1, 893–914 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Fattorini, ‘‘Remarks on the use of Shapiro–Wilk statistic for testing multivariate normality,’’ Statistica 46, 209–217 (1986).

    MathSciNet  MATH  Google Scholar 

  25. T. S. Ferguson, ‘‘A Bayesian analysis of some nonparametric problems,’’ The Annals of Statistics 1, 209–230 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Fernandez, Data Mining Using SAS Applications, 2nd ed. (CRC Press, Boca Raton, 2010).

    Book  MATH  Google Scholar 

  27. R. Gnanadesikan and J. Kettenring, ‘‘Robust estimates, residuals, and outlier detection with multiresponse data,’’ Biometrics 28, 81–124 (1972).

    Article  Google Scholar 

  28. Z. Hanusz and J. Tarasińska, ‘‘New test for multivariate normality based on Small’s and Srivastava’s graphical methods,’’ Journal of Statistical Computation and Simulation 82, 1743–1752 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. M. Hasofer and G. Z. Stein, ‘‘Testing for multivariate normality after coordinate transformation,’’ Communications in Statistics-Theory and Methods 19, 1403–1418 (1990).

    Article  MathSciNet  Google Scholar 

  30. M. J. R. Healy, ‘‘Multivariate normal plotting,’’ Applied Statistics 17, 157–161 (1968).

    Article  Google Scholar 

  31. N. Henze and J. Visagie, ‘‘Testing for normality in any dimension based on a partial differential equation involving the moment generating function,’’ Annals of the Institute of Statistical Mathematics (2019). https://doi.org/10.1007/s10463-019-00720-8

  32. N. Henze and B. Zirkler, ‘‘A class of invariant consistent tests for multivariate normality,’’ Communications in Statistics-Theory and Methods 19, 3595–3617 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Holgersson, ‘‘A graphical method for assessing multivariate normality,’’ Computational Statistics 21, 141–149 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  34. L. F. James, ‘‘Large sample asymptotics for the two-parameter Poisson-Dirichlet process,’’ in: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, eds. B. Clarke and S. Ghosal (Ohio: Institute of Mathematical Statistics, 2008), pp. 187–199.

    Google Scholar 

  35. K. Jönsson, ‘‘A robust test for multivariate normality,’’ Economics Letters 113, 199–201 (2011).

    Article  MathSciNet  Google Scholar 

  36. I. Kim and S. Park, ‘‘Likelihood ratio tests for multivariate normality,’’ Communications in Statistics-Theory and Methods 47, 1923,1934 (2018).

  37. N. Kim, ‘‘A robustified Jarque-Bera test for multivariate normality,’’ Economic Letter 140, 48–52 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. S. Madukaife and F. C. Okafor, ‘‘A powerful affine invariant test for multivariate normality based on interpoint distances of principal components,’’ Communications in Statistics-Simulation and Computation 47, 1264–1275 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  39. J. F. Malkovich and A. A. Afifi, ‘‘On tests for multivariate normality,’’ Journal of the American Statistical Association 68, 176–179 (1973).

    Article  Google Scholar 

  40. K. V. Mardia, ‘‘Measures of multivariate skewness and kurtosis with applications,’’ Biometrika 57, 519–530 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  41. D. J. Nott, M. Seah, L. Al-Labadi, M. Evans, H. K. Ng, and B. Englert, ‘‘Using prior expansions for prior-data conflict checking,’’ Bayesian Analysis (2020). https://projecteuclid.org/euclid.ba/1585360930

  42. R.W. Oldford, ‘‘Self-calibrating quantile-quantile plots,’’ The American Statistician 70, 74–90 (2016).

    Article  MathSciNet  Google Scholar 

  43. S. Rincón-Gallardo, C. P. Quesenberry, and F. J. O’Reilly, ‘‘Conditional probability integral transformations and goodness-of-fit tests for multivariate normal distributions,’’ The Annals of Statistics 7, 1052–1057 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  44. J. P. Royston, ‘‘Some techniques for assessing multivariate normality based on the Shapiro–Wilk W,’’ Applied Statistics 32, 121–133 (1983).

    Article  MATH  Google Scholar 

  45. J. Sethuraman, ‘‘A constructive definition of Dirichlet priors,’’ Statistica Sinica 4, 639–650 (1994).

    MathSciNet  MATH  Google Scholar 

  46. N. Small, ‘‘Plotting squared radii,’’ Biometrika 65, 657–658 (1978).

    Article  MATH  Google Scholar 

  47. G. J. Székely and M. L. Rizzo, ‘‘Energy statistics: A class of statistics based on distances,’’ Journal of Statistical Planning and Inference 143, 1249–1272 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. T. Tokdar and R. Martin, ‘‘Bayesian test of normality versus a Dirichlet process mixture alternative,’’ Sankhya B 83, 66–96 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  49. R. L. Wolpert, and K. Ickstadt, Simulation of Lévy random fields. In Practical Nonparametric and Semiparametric Bayesian Statistics, Vol. 133: Lect. Notes Stat. (Springer, New York, 1998), pp. 227–242.

  50. M. Zarepour and L. Al-Labadi, ‘‘On a rapid simulation of the Dirichlet process,’’ Statistics and Probability Letters 82, 916–924 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Zhou and Y. Shao, A powerful test for multivariate normality, Applied Statistics 41, 351–363 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Editor, Associate Editor, and referees for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luai Al-Labadi, Forough Fazeli Asl or Zahra Saberi.

Appendices

PROOF OF LEMMA 1

Consider \(P_{N}(x)\) as

$$P_{N}(x)=\begin{cases}0\quad x<Y_{(1)}\\ P_{N}(Y_{(i)})\quad Y_{(i)}\leq x<Y_{(i+1)}\,(i=1,\ldots,N-1)\\ 1\quad x\geq Y_{(N)}.\end{cases}$$

Let \(g(x)=\frac{dG(x)}{dx}\), then

$$d_{\textrm{AD}}(P_{N},G)=\int\limits_{-\infty}^{\infty}\frac{\left(P_{N}(x)-G(x)\right)^{2}}{G(x)\left(1-G(x)\right)}g(x)\,dx=\int\limits_{-\infty}^{Y_{(1)}}\frac{G(x)^{2}}{G(x)\left(1-G(x)\right)}g(x)\,dx$$
$${}+\int\limits_{Y_{(N)}}^{\infty}\frac{\left(1-G(x)\right)^{2}}{G(x)\left(1-G(x)\right)}g(x)\,dx+\sum_{i=1}^{N-1}\int\limits_{Y_{(i)}}^{Y_{(i+1)}}\frac{\left(P_{N}(Y_{(i)})-G(x)\right)^{2}}{G(x)\left(1-G(x)\right)}g(x)\,dx.$$

Substituting \(y=G(x)\), \(G(Y_{(i)})=U_{(i)}\), \(G(-\infty)=0\), and \(G(\infty)=1\), gives

$$d_{\textrm{AD}}(P_{N},G)=\sum_{i=1}^{N-1}\int\limits_{U_{(i)}}^{U_{(i+1)}}\frac{\left(P_{N}(Y_{(i)})-y\right)^{2}}{y\left(1-y\right)}\,dy+\int\limits_{0}^{U_{(1)}}\frac{y}{1-y}\,dy+\int\limits_{U_{(N)}}^{1}\frac{1-y}{y}\,dy$$
$${}=\sum_{i=1}^{N-1}\bigg{[}P_{N}^{2}(Y_{(i)})\log(y)-\Big{[}\left(P_{N}(Y_{(i)})-1\right)^{2}\log(1-y)\Big{]}-y\bigg{]}_{U_{(i)}}^{U_{(i+1)}}$$
$${}+\bigg{[}-y-\log(1-y)\bigg{]}_{0}^{U_{(1)}}+\bigg{[}\log(y)-y\bigg{]}_{U_{(N)}}^{1}=I_{1}+I_{2}+I_{3}.$$

Note that,

$$I_{1}=-\sum_{i=1}^{N-1}\left(U_{(i+1)}-U_{(i)}\right)-\sum_{i=1}^{N-1}\left(P_{N}(Y_{(i)})-1\right)^{2}\left(\log(1-U_{(i+1)})-\log(1-U_{(i)})\right)$$
$${}+\sum_{i=1}^{N-1}P_{N}^{2}(Y_{(i)})\left(\log(U_{(i+1)})-\log(U_{(i)})\right)$$
$${}=\sum_{i=1}^{N-1}P_{N}^{2}(Y_{(i)})\log\frac{U_{(i+1)}\left(1-U_{(i)}\right)}{U_{(i)}\left(1-U_{(i+1)}\right)}+\sum_{i=1}^{N-1}\left(2P_{N}(Y_{(i)})-1\right)\log\frac{1-U_{(i+1)}}{1-U_{(i)}}-\left(U_{(N)}-U_{(1)}\right).$$

Also, \(I_{2}=-U_{(1)}-\log\left(1-U_{(1)}\right)\) and \(I_{3}=-1-\log U_{(N)}+U_{(N)}.\) Therefore, adding \(I_{1}\), \(I_{2}\), and \(I_{3}\), gives

$$d_{\textrm{AD}}(P_{N},G)=\sum_{i=1}^{N-1}P_{N}^{2}(Y_{(i)})\log\frac{U_{(i+1)}\left(1-U_{(i)}\right)}{U_{(i)}\left(1-U_{(i+1)}\right)}+\sum_{i=1}^{N-1}\left(2P_{N}(Y_{(i)})-1\right)\log\frac{1-U_{(i+1)}}{1-U_{(i)}}$$
$${}-1-\log\left(U_{(N)}(1-U_{(1)})\right).$$
(8)

The proof is completed by substituting \(P_{N}(Y_{(i)})=\sum_{j=1}^{i}J^{\prime}_{j}\), \(P^{2}_{N}(Y_{(i)})=\sum_{j=1}^{i}J^{\prime^{2}}_{j}+2\sum_{j=1}^{i-1}\sum_{k=j+1}^{i}J^{\prime}_{k}J^{\prime}_{j}\) and \(U_{(i)}=G(Y_{(i)})\) in terms on the right-hand side of (8).

PROOF OF LEMMA 3

To prove (i), note that, from the property of the Dirichlet process, for any \(t\in\mathbb{R}\), \(E_{P}(P(t)-\) \(H(t))^{2}=\frac{H(t)(1-H(t))}{a+1}\). Then

$$E_{P}\left(d_{\textrm{AD}}(P,H)\right)=\int\limits_{-\infty}^{\infty}\frac{E_{P}\left(P(t)-H(t)\right)^{2}}{H(t)\left(1-H(t)\right)}\,dH(t)=\frac{1}{a+1}.$$

To prove (ii), it is enough to compute \(E_{P}\left(d_{\textrm{AD}}(P,H)\right)^{2}\). According to the Corollary 2, we consider \(H\) to be the cdf of the Uniform distribution on [0]. Then

$$E_{P}\left(d_{\textrm{AD}}(P,H)\right)^{2}=E_{P}\left(\int\limits_{-\infty}^{\infty}\frac{\left(P(t)-H(t)\right)^{2}}{H(t)\left(1-H(t)\right)}\,dH(t)\right)^{2}$$
$${}=E_{P}\left(\int\limits_{0}^{1}\frac{\left(P(t)-t\right)^{2}}{t(1-t)}\,dt\int\limits_{0}^{1}\frac{\left(P(s)-s\right)^{2}}{s(1-s)}\,ds\right)=E_{P}\Bigg{(}\int\limits_{0}^{1}\int\limits_{0}^{t}\frac{\left(P(t)-t\right)^{2}\left(P(s)-s\right)^{2}}{t(1-t)s(1-s)}\,ds\,dt$$
$${}+\int\limits_{0}^{1}\int\limits_{0}^{s}\frac{\left(P(t)-t\right)^{2}\left(P(s)-s\right)^{2}}{t(1-t)s(1-s)}\,dt\,ds\Bigg{)}=2E_{P}\Bigg{(}\int\limits_{0}^{1}\int\limits_{0}^{t}\frac{\left(P(t)-t\right)^{2}\left(P(s)-s\right)^{2}}{t(1-t)s(1-s)}\,ds\,dt\Bigg{)}$$
$${}=2\int\limits_{0}^{1}\int\limits_{0}^{t}\frac{E_{P}\big{\{}\left(P(s)+P\left((s,t]\right)-t\right)^{2}\left(P(s)-s\right)^{2}\big{\}}}{t(1-t)s(1-s)}\,ds\,dt.$$

Note that, from the property of the Dirichlet process, for any \(s<t\) and \(i,j\in\mathbb{N}\), \(E_{P}(P^{i}(s)P^{j}((s,t]))=\frac{\Gamma(a)}{\Gamma(a+i+j)}\frac{\Gamma(as+i)}{\Gamma(as)}\frac{\Gamma\left(a(t-s)+j\right)}{\Gamma(a(t-s))}\) and \(E_{P}\left(P^{i}(s)\right)=\prod_{k=0}^{i-1}\frac{as+k}{a+k}\). Then

$$E_{P}\left(d_{\textrm{AD}}(P,H)\right)^{2}=\int\limits_{0}^{1}\int\limits_{0}^{t}\frac{1}{ts(1-t)(1-s)}\bigg{\{}\frac{2as(a(t-s)+1)(as+1)(t-s)}{(a+3)(a+2)(a+1)}$$
$${}+\frac{4as(as+2)(as+1)(t-s)}{(a+3)(a+2)(a+1)}+\frac{2s(as+3)(as+2)(as+1)}{(a+3)(a+2)(a+1)}$$
$${}-\frac{4as(2s+t)(as+1)(t-s)}{(a+2)(a+1)}-\frac{4as^{2}(a(t-s)+1)(t-s)}{(a+2)(a+1)}$$
$${}-\frac{4s(as+2)(as+1)(s+t)}{(a+2)(a+1)}+\frac{2s(s^{2}+4st+t^{2})(as+1)}{a+1}$$
$${}+\dfrac{4as^{2}(s+2t)(t-s)}{a+1}+\frac{2s^{2}(t-s)(a(t-s)+1)}{a+1}-4s^{2}t(t-s)-4s^{2}t(s+t)+2s^{2}t^{2}\bigg{\}}\,ds\,dt.$$

After simplification, we get

$$E_{P}\left(d_{\textrm{AD}}(P,H)\right)^{2}=\int\limits_{0}^{1}\int\limits_{0}^{t}\frac{2\left((a-6)\left((3t-2)s-t\right)-6\right)}{t(s-1)(a+3)(a+2)(a+1)}\,ds\,dt$$
$${}=\int\limits_{0}^{1}\frac{2}{t(a+3)(a+2)(a+1)}\Big{\{}(a-6)(3t-2)t-2i\pi\left((a-6)t-a+3\right)$$
$${}+2\left(a(t-1)-6t+3\right)\log(t-1)\Big{\}}\,dt=\frac{a(2\pi^{2}-15)-6(\pi^{2}-15)}{3(a+3)(a+2)(a+1)}$$

for Re\((t)<1\) or \(t\not\in\mathbb{R}\), where Re\((t)\) denotes the real part of \(t\) and \(i\) is the imaginary unit. Then, the variance of \(d_{\textrm{AD}}(P,H)\) is given by

$$\textrm{Var}_{P}(d_{\textrm{AD}}(P,H))=E_{P}\left(d_{\textrm{AD}}(P,H)\right)^{2}-E_{P}^{2}\left(d_{\textrm{AD}}(P,H)\right)$$
$${}=\dfrac{2\left((\pi^{2}-9)a^{2}+(30-2\pi^{2})a-3\pi^{2}+36\right)}{3(a+1)^{2}(a+2)(a+3)}.$$

Hence, the proof is completed.

PROOF OF LEMMA 5

Assume that \(r^{\prime}=(R^{\prime}(\mathbf{y}_{1}),\ldots,R^{\prime}(\mathbf{y}_{n}))\) is the observed sample from \(P\) where \(P\sim DP(a,F_{\textrm{beta}})\). Note that

$$d_{\textrm{AD}}(P_{r^{\prime}},F_{\textrm{beta}})=\int\limits_{-\infty}^{\infty}\frac{\left(P_{r^{\prime}}(t)-F_{\textrm{beta}}(t)\right)^{2}}{F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}\,dF_{\textrm{beta}}(t)$$
$${}\leq\left(\displaystyle{\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\right)^{2}\int\limits_{-\infty}^{\infty}\frac{1}{F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}dF_{\textrm{beta}}(t)$$
$${}\leq\displaystyle{\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\int\limits_{-\infty}^{\infty}\frac{1}{F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}dF_{\textrm{beta}}(t)$$
$${}\leq\int\limits_{-\infty}^{\infty}\frac{1}{F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}dF_{\textrm{beta}}(t)\bigg{\{}\displaystyle{\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-H_{r^{\prime}}(t)|+\displaystyle{\sup_{t\in\mathbb{R}}}|H_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\bigg{\}},$$

where the third inequality holds since \(0\leq|P_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\leq 1\) and the fourth inequality holds by triangle inequality. To prove (i), as \(a\rightarrow\infty\), from James [34], \({\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-H_{r^{\prime}}(t)|\xrightarrow{\mathrm{a.s.}}0\) and by the continuous mapping theorem \({\sup_{t\in\mathbb{R}}}|H_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\xrightarrow{\mathrm{a.s.}}0\). To prove (ii), since \({\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-H_{r^{\prime}}(t)|\xrightarrow{\mathrm{a.s.}}0\) as \(n\rightarrow\infty\) and \(\mathcal{H}_{0}\) is true, the continuous mapping theorem and Polya’s theorem [18] imply \({\sup_{t\in\mathbb{R}}}|H_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\xrightarrow{\mathrm{a.s.}}0\). Note that, the final results of part (i) and (ii) are concluded by practical assumptions in probability and measure theory given in Section 3.1 of Capiński and Kopp [15].

To prove (iii), note that, \(\left(F_{\textrm{beta}}(t)(1-F_{\textrm{beta}}(t))\right)^{-1}\geq 4\), then

$$d_{\textrm{AD}}(P_{r^{\prime}},F_{\textrm{beta}})\geq 4\int\limits_{-\infty}^{\infty}\left(P_{r^{\prime}}(t)-F_{\textrm{beta}}(t)\right)^{2}\,dF_{\textrm{beta}}(t)\geq 4\,d_{CvM}(P_{r^{\prime}},F_{\textrm{beta}}).$$

From Choi and Bulgren [17], since \(d_{CvM}(P_{r^{\prime}},F_{\textrm{beta}})\geq\dfrac{1}{3}\left(\displaystyle{\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\right)^{3}\),

$$d_{\textrm{AD}}(P_{r^{\prime}},F_{\textrm{beta}})\geq\frac{4}{3}\left(\displaystyle{\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\right)^{3}.$$

Using the triangle inequality gives

$$\displaystyle{\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\geq\displaystyle{\sup_{t\in\mathbb{R}}}|H_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|-\displaystyle{\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-H_{(d)}(t)|.$$

Similar to the proof of part (ii), as \(n\rightarrow\infty\), \({\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-H_{(d)}(t)|\xrightarrow{\mathrm{a.s.}}0\) and \({\sup_{t\in\mathbb{R}}}|H_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\xrightarrow{\mathrm{a.s.}}\displaystyle{\sup_{t\in\mathbb{R}}}|P_{\mathrm{true}}(t)-F_{\textrm{beta}}(t)|\), where \(P_{\mathrm{true}}\) is the true distribution of the sample \(d\). Since \(\mathcal{H}_{0}\) is not true, \(\liminf\displaystyle{\sup_{t\in\mathbb{R}}}|P_{r^{\prime}}(t)-F_{\textrm{beta}}(t)|\displaystyle{\overset{\mathrm{a.s.}}{>}}0\), which implies \(\liminf d_{\textrm{AD}}(P_{r^{\prime}},\) \(F_{\textrm{beta}})\displaystyle{\overset{\mathrm{a.s.}}{>}}0\).

To prove (iv), since for any \(t\in\mathbb{R}\), \(E_{P_{r^{\prime}}}\left(P_{r^{\prime}}(t)\right)=H_{r^{\prime}}(t)\) and \(E_{P_{r^{\prime}}}\left(P_{r^{\prime}}(t)-H_{r^{\prime}}(t)\right)^{2}=\frac{H_{r^{\prime}}(t)\left(1-H_{r^{\prime}}(t)\right)}{a+n+1}\), then, as \(n\rightarrow\infty\)

$$\liminf E_{P_{r^{\prime}}}\left(d_{\textrm{AD}}(P_{r^{\prime}},F_{\textrm{beta}})\right)\geq\liminf\int\limits_{-\infty}^{\infty}\frac{H_{r^{\prime}}(t)\left(1-H_{r^{\prime}}(t)\right)}{(a+n+1)F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}dF_{\textrm{beta}}(t)$$
$${}+\liminf\int\limits_{-\infty}^{\infty}\frac{\left(H_{r^{\prime}}(t)-F_{\textrm{beta}}(t)\right)^{2}}{F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}dF_{\textrm{beta}}(t).$$

Applying Fatou’s lemma gives

$$\liminf E_{P_{r^{\prime}}}\left(d_{\textrm{AD}}(P_{r^{\prime}},F_{\textrm{beta}})\right)\geq\int\limits_{-\infty}^{\infty}\liminf\left(\frac{H_{r^{\prime}}(t)\left(1-H_{r^{\prime}}(t)\right)}{(a+n+1)F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}\right)dF_{\textrm{beta}}(t)$$
$${}+\int\limits_{-\infty}^{\infty}\liminf\left(\frac{\left(H_{r^{\prime}}(t)-F_{\textrm{beta}}(t)\right)^{2}}{F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}\right)dF_{\textrm{beta}}(t)=0+\int\limits_{-\infty}^{\infty}\inf\left(\frac{\left(P_{\mathrm{true}}(t)-F_{\textrm{beta}}(t)\right)^{2}}{F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}\right)dF_{\textrm{beta}}(t).$$

Since \(\mathcal{H}_{0}\) is not true, \(\inf\left(\frac{\left(P_{\mathrm{true}}(t)-F_{\textrm{beta}}(t)\right)^{2}}{F_{\textrm{beta}}(t)\left(1-F_{\textrm{beta}}(t)\right)}\right)\displaystyle{\overset{\mathrm{a.s.}}{>}}0\). Hence, by Theorem 15.2 of Billingsley [13], \(\liminf E_{P_{r^{\prime}}}\left(d_{\textrm{AD}}(P_{r^{\prime}},F_{\textrm{beta}})\right)\displaystyle{\overset{\mathrm{a.s.}}{>}}0\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Labadi, L., Fazeli Asl, F. & Saberi, Z. A Necessary Bayesian Nonparametric Test for Assessing Multivariate Normality. Math. Meth. Stat. 30, 64–81 (2021). https://doi.org/10.3103/S1066530721030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530721030029

Keywords:

Navigation