Skip to main content
Log in

Studies of the ceramic material produced by pressureless sintering from the AlN-Y2O3-(Si-C) powder composition using electron microscopy, Raman spectroscopy and measurements of the thermal conductivity and microwave radiation

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Samples of composite with ceramic matrix of aluminum nitride have been produced by pressureless sintering of the AlN-Y2O3 powder compositions with addition of SiC-C particles of size 50 nm (agglomerates of 200 nm). The presence of a SiC solid solution in AlN has been revealed by Raman and X-ray diffraction microanalyses and measurements of microwave energy attenuation and of thermal conductivity. The basic physico-mechanical properties of the resultant AlN-(SiC-C) composites: hardness, thermal conductivity, attenuation of the microwave energy in the frequencies range from 9.5 to 10.8 GHz have been defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheppard, L.M., Aluminum nitride: a versatile but challenging material, Ceramic Bulletin, 1990, vol. 60, pp. 1801–1812.

    Google Scholar 

  2. Hundere, A.M. and Einarsrud, M.A., Microstructural development in AlN(YF3) ceramics, J. Eur. Ceram. Soc., 1997, vol. 17, pp. 873–879.

    Article  CAS  Google Scholar 

  3. Cummings, K.A. and Risbud, S.H., Dielectric materials for window applications, J. Phys. Chem. Solids, 2000, vol. 61, pp. 551–560.

    Article  CAS  Google Scholar 

  4. Ichimaru, H. and Pezzotti, G., Raman microprobe mapping of residual and bridging stress fields in AlN ceramics, Mater. Sci. Eng. A, 2002, vol. 326, no. 2, pp. 261–269.

    Article  Google Scholar 

  5. Lee, H.-K. and Kim, D.K., Defect characterization of high thermal conductivity CaF2 doped AlN ceramics by Raman spectroscopy, Modern Phys. Lett. B, 2009, vol. 23, nos. 31–32, pp. 3869–3876.

    Article  CAS  Google Scholar 

  6. Herrmann, R., Ceramics for hybrid vehicles, solar and wind power systems, Ceram. Forum Int., 2010, vol. 86, no. 11–12, pp. E15–E16.

    Google Scholar 

  7. Lee, H.-K. and Kim, D.K., Investigation on thermal conductivity of aluminum nitride ceramics by FT-Raman spectroscopy, J. Amer. Ceram. Soc., 2010, vol. 93, no. 8, pp. 2167–2170.

    Article  CAS  Google Scholar 

  8. Jagannadham, K., Sharma, A.K., Wei, Q., Kalyanraman, R., and Narayan, J., Structural characteristics of AlN films deposited by pulsed laser deposition and reactive magnetron sputtering: A comparative study, J. Vac. Sci. Technol. A, 1998, vol. 16, no. 5, pp. 2804–2815.

    Article  CAS  Google Scholar 

  9. Darakchieva, V., Paskov, P.P., Paskova, T., Birch, J., Tungasmita, S., and Monemar, B., Deformation potentials of the E1(TO) mode in AlN, Appl. Phys. Lett., 2002, vol. 80, no. 13, pp. 2302–2304.

    Article  CAS  Google Scholar 

  10. Sarua, A., Kuball, M., and Van Nostrand, J., Deformation potentials of the E2(high) phonon mode of AlN, Ibid., 2002, vol. 81, no. 8, pp. 1426–1428.

    Article  CAS  Google Scholar 

  11. Kuball, M., Hayes, J.M., Prins, A.D., van Uden, N.W.A., Dunstan, D.J., Ying, Shi, and Edgar, J.H., Raman scattering studies on single-crystalline bulk AlN under high pressures, Ibid., 2001, vol. 78, no. 6, pp. 724–726.

    Article  CAS  Google Scholar 

  12. Kuball, M., Hayes, J. M., Ying, Shi, Edgar, J.H., Prins, A.D., van Uden, N.W.A., and Dunstan, D.J., Raman scattering studies on single-crystalline bulk AlN: temperature and pressure dependence of the AlN phonon modes, J. Crystal Growth, 2001, vol. 231, pp. 391–396.

    Article  CAS  Google Scholar 

  13. Strassbourg, M., Senawiratne, J., Dietz, N., Haboeck, U., Hoffmann, A., Noveski, V., Dalmau, R., Schlesser, R., and Sitar, Z., The growth and optical properties of large, high-quality AlN single crystals, J. App. Phys., 2004, vol. 96, no. 10, pp. 5870–5876.

    Article  Google Scholar 

  14. Senawiratne, J., Strassburg, V., Dietz, N., Haboeck, U., Hoffmann, A., Noveski, V., Dalmau, R., Schlesser, R., and Sitar, Z., Raman, photoluminescence and absorption studies on high quality AlN single crystals, Phys. Stat. Sol. (c), 2005, vol. 2, no. 7, pp. 2774–2778.

    Article  CAS  Google Scholar 

  15. Tangen, I.-L., Yu, Y., Grande, T., Mokkelbost, T., Høier, R., and Einarsrud, M.-A., Preparation and characterization of aluminum nitride-silicon carbide composites, Ceram. Int., 2004, vol. 6, pp. 931–938.

    Article  Google Scholar 

  16. McNeil, L.E., Grimsditch, M., and French, R.H., Vibrational spectroscopy of aluminum nitride, J. Amer. Ceram. Soc., 1993, vol. 76, no. 5, pp. 1132–1136.

    Article  CAS  Google Scholar 

  17. Shishonok, E.M., Cubic boron nitride: Raman and luminescence investigations, prospects for use in opto- and microelectronics, Minsk: Publishing Center of BSU, 2009.

    Google Scholar 

  18. Serbenyuk, T.B., Aleksandrova, L.I., Zaika, M.I., Ivzhenko, V.V., Kuzmenko, E.F., Loshak, M.G., Marchenko, A.A., Prikhna, T.O., Sverdun, V.B., Tkach, S.V., Borimskii, O.I., Fesenko, I.P., Chasnyk, V.I., and Wend, M., Structure, mechanical, thermal and functional properties of the aluminum nitride-silicon carbide ceramic material, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 384–391.

    Article  Google Scholar 

  19. Serbenyuk, T.B., Ivzhenko, V.V., Sverdun, V.B., Fesenko, I.P., Chasnyk, V.I., Shmegera, R. S., and Prikhna, T.O., The sintering of the AlN-SiC composite material, Ibid., 2006, vol. 28, no. 1, pp. 20–40.

    Google Scholar 

  20. Mykhaylyk, O.O. and Gadzira, M.P., Arrangement of C atoms in the SiC-C solid solution, Acta Cryst., 1999, B55, pp. 297–305.

    Article  CAS  Google Scholar 

  21. Kuzenkova, M.O., Dub, S.M., Fesenko, I.P., and Shmegera, R.S., High-temperature annealing of AlN ceramics, J. Superhard Mater., 2003, vol. 25, no. 3, pp. 8–13.

    Google Scholar 

  22. Fesenko, I., Dub, S., Kisly, P., and Kuzenkova, M., New applications of AlN ceramics, powder metallurgical high performance materials, Proc. 16th Int. Plansee Seminar, Reutte, Tirol, Austria: Plansee Holding AG, 2005, vol. 2, pp. 754–761.

    Google Scholar 

  23. Chasnyk, V.I. and Fesenko, I.P., Volumetric absorber of the energy of the microwave frequency based on aluminum nitride and silicon carbide, Machinery and microwave devices, 2008, no. 2, pp. 45–47.

    Google Scholar 

  24. Cao, Y.G., Chen, X.L., Lan, Y.C., Li, J.Y., Xu, T., Liu, Q.L., and Liang, J.K., Blue emission and Raman scattering spectrum from AlN nanocrystalline powders, J. Cryst. Growth, 2000, vol. 213, pp. 198–202.

    Article  CAS  Google Scholar 

  25. Lughi, V. and Clarke, D.R., Defect and stress characterization of AlN films by Raman spectroscopy, Appl. Phys. Lett., 2006, vol. 89, art. 241911.

  26. Davidchuk, N.K., Gadzyra, N.F., and Gnesin, G.G., Structure formation of (SiC-C)-Al2O3-Y2O3 composite ceramics at pressureless sintering, Proc. of Int. Conf. on Materials Science of Refractory Compounds: Achievements and Problems, Kiev, 27–29 May 2008, Kiev: IPM, NAS of Ukraine, 2008, pp. 141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Fesenko.

Additional information

Original Ukranian Text © I.P. Fesenko, V.I. Chasnyk, O.F. Kolomys, O.M. Kaidash, N.K. Davydchuk, T.B. Serbenyuk, E.F. Kuz’menko, M.P. Gadzyra, O.O. Lyeshchuk, V.V. Strel’chuk, V.B. Galyamin, S.V. Tkach, E.I. Fesenko, P.S. Shmegera, Yu.I. Azima, H. Recht, H. Vollstädt, 2015, published in Sverkhtverdye Materialy, 2015, Vol. 37, No. 2, pp. 11–20.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fesenko, I.P., Chasnyk, V.I., Kolomys, O.F. et al. Studies of the ceramic material produced by pressureless sintering from the AlN-Y2O3-(Si-C) powder composition using electron microscopy, Raman spectroscopy and measurements of the thermal conductivity and microwave radiation. J. Superhard Mater. 37, 73–81 (2015). https://doi.org/10.3103/S1063457615020021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457615020021

Keywords

Navigation