Skip to main content
Log in

The Influence of the “Piston Heat Belt–Sleeve” Gap on Heat Exchange in the Combustion Chamber of an Engine Depending on the Fuel Utilized

  • RELIABILITY, STRENGTH, AND WEAR RESISTANCE OF MACHINES AND STRUCTURES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

Numerous experimental works concerning the comparative analysis of heat transfer processes in hydrogen and gasoline engines have confirmed the noticeable increase in heat loss in the case of applying hydrogen. Without denying the influence of higher values of the flame propagation velocity and the hydrogen combustion temperature contributing to intensification of the convective heat transfer in the combustion chamber, the present article shows that, when using hydrogen as a fuel, the main problem consists in penetration of the flame into the gap between the heat belt of the piston and the sleeve. We analyze this phenomenon using the flame extinguishing theory by Ya.B. Zeldovich. On the base of the unsteady heat flux measurements in the gap, as well as of 3D simulation of both the thermophysical processes in the combustion chamber and the thermal state of the piston of the experimental gasoline engine converted to hydrogen, we explain the phenomenon of relative increase in heat losses in the hydrogen engine, its existence previously having been shown experimentally without theoretical justification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kozlov, S.I. and Fateev, V.N., Vodorodnaya energetika: sovremennoe sostoyanie, problemy, perspektivy (Hydrogen Power Engineering: Modern State, Problems, Perspectives), Velikhov, E.P., Ed., Moscow: Gazprom VNIIGAZ, 2009.

  2. Kavtaradze, R., Natriashvili, T., and Gladyshev, S., Hydrogen-diesel engine: problems and prospects of improving the working process, Technical Paper of Society of Automotive Engineers, 2019, no. 2019-01-0541. https://doi.org/10.4271/2019-01-0541

  3. Cernat, A., Pana, C., Negurescu, N., Lazaroiu, G., Nutu, C., and Fuiorescu, D., Hydrogen—an alternative fuel for automotive diesel engines used in transportation, Sustainability, 2020, no. 12, p. 9321.  https://doi.org/10.3390/su12229321

  4. Babayev, R., Andersson, A., Dalmau, A.S., Im, H.G., and Johansson, B., Computational characterization of hydrogen direct injection and nonpremixed combustion in a compression-ignition engine, Int. J. Hydrogen Energy, 2021, vol. 46, no. 35, pp. 18678–18696.  https://doi.org/10.1016/j.ijhydene.2021.02.223

    Article  Google Scholar 

  5. Shudo, T. and Suzuki, H., Applicability of heat transfer equations to hydrogen combustion, JSAE Rev., 2002, vol. 23, no. 3, pp. 303–308.  https://doi.org/10.1016/S0389-4304(02)00193-5

    Article  Google Scholar 

  6. Shudo, T., Improving thermal efficiency by reducing cooling losses in hydrogen combustion engines, Int. J. Hydrogen Energy, 2007, vol. 32, no. 17, pp. 4285–4293.  https://doi.org/10.1016/j.ijhydene.2007.06.002

    Article  Google Scholar 

  7. Laiminger, St., Url, M., Payrhuber, K., and Schneider, M., Wasserstoff für Gasmotoren – Kraftstoff der Zukunft, Motortech. Z., 2020, vol. 81, no. 5, pp. 66–71.  https://doi.org/10.1007/s35146-020-0221-0

    Article  Google Scholar 

  8. Cech, M., Knape, M., Wilfert, T., and Reiser, Ch., Der abgasfreie Wasserstoff-Kreislaufmotor, Motortech. Z., 2021, vol. 82, no. 4, pp. 44–49.  https://doi.org/10.1007/s35146-021-0645-1

    Article  Google Scholar 

  9. Bobusch, B., Ebert, T., Fink, A., and Nett, O., Düse zur oszillierenden Direkteinblasung im H2-Verbrennungsmotor, Motortech. Z., 2021, vol. 82, nos. 7–8, pp. 42–47.  https://doi.org/10.1007/s35146-021-0686-5

    Article  Google Scholar 

  10. Koch, D.T., Eßer, E., Kureti, S., and Sousa, A., H2-DeNOx-Katalysator für H2-Verbrennungsmotoren, Motortech. Z., 2020, vol. 81, no. 6, pp. 32–39.  https://doi.org/10.1007/s35146-020-0234-8

    Article  Google Scholar 

  11. Duan, J., Liu, F., and Sun, B., Backfire control and power enhancement of a hydrogen internal combustion engine, Int. J. Hydrogen Energy, 2014, vol. 39, no. 9, pp. 4581–4589.  https://doi.org/10.1016/j.ijhydene.2013.12.175

    Article  Google Scholar 

  12. Mishchenko, A.I., Primenenie vodoroda dlya avtomobil’nykh dvigatelei (Application of Hydrogen for Automotive Engines), Kiev: Naukova Dumka, 1984.

  13. Merker, G., Schwarz, Ch., Stiesch, G., and Otto, F., Verbrennungsmotoren: Simulation der Verbrennung und Schadstoffbildung, Stuttgart: Teubner, 2006, 3rd ed.

    Google Scholar 

  14. Zeldovich, Ya.B., Theory of the propagation limit of still flame, Izbrannye trudy. Khimicheskaya fizika i gidrodinamika (Ya. B. Zeldovich. Selected Works. Chemical Physics and Hydrodynamics), Moscow: Nauka, 1984.

    Google Scholar 

  15. Kavtaradze, R.Z., Lokal’nyi teploobmen v porshnevykh dvigatelyakh (Local Heat Transfer in Piston Engines), Moscow: Mosk. Gos. Tekh. Univ. Baumana, 2016, 3rd ed.

  16. Rosenberger, M., Dellner, M., Kluge, M., and Tarantik, K.R., Fahrzeugintegration eines thermoelektrischen generators, Motortech. Z., 2016, vol. 77, no. 4, pp. 38–45.  https://doi.org/10.1007/s35146-016-0006-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Kavtaradze.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Dikhter

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavtaradze, R.Z., Onischenko, D.O., Golosov, A.S. et al. The Influence of the “Piston Heat Belt–Sleeve” Gap on Heat Exchange in the Combustion Chamber of an Engine Depending on the Fuel Utilized. J. Mach. Manuf. Reliab. 51, 112–120 (2022). https://doi.org/10.3103/S1052618822010046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618822010046

Keywords:

Navigation