Skip to main content
Log in

Localization of plastic deformation in alloyed γ-iron single crystals electrolytically saturated with hydrogen

  • Published:
Steel in Translation Aims and scope

Abstract

On chromonickel γ-iron single crystals with \(\left[ {\bar 111} \right]\) orientation and low packing-defect density, the plastic-flow localization during electrolytic saturation with hydrogen within a three-electrode electrochemical cell is investigated, with constant controllable cathode potential. On the plastic-flow curve for the extension of single crystals in the initial state (without hydrogen), beyond the transition from elasticity to developed plastic flow, linear strain hardening and then parabolic (Taylor) strain hardening may be observed. The plastic-flow curve for single crystals of austenitic steel saturated with hydrogen includes a small projection and a flow trough, stages of linear strain hardening and parabolic strain hardening, and a prefailure stage. Saturation of \(\left[ {\bar 111} \right]\) single crystals with hydrogen reduces the yield point, increases the plasticity to failure by a factor of 1.3, and suppresses necking in crystals oriented for multiple slip. By double-exposure speckle photography, the basic types of plastic flow location at different stages of strain hardening may be identified, in the presence and absence of hydrogen, and the corresponding parameters may be determined. Hydrogenation of chromonickel γ-iron single crystals intensifies the localization of deformation and leads to considerable changes in the characteristic distances between the plastic-shear bands and the localized-strain zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zuev, L.B., Danilov, V.I., and Barannikova, S.A., Fizika makrolokalizatsii plasticheskogo techeniya (Physics of Plastic-Flow Localization), Novosibirsk: Nauka, 2008.

    Google Scholar 

  2. Zuev, L.B., Annal. Phys., 207, vol. 16, pp. 286–310.

  3. Zuev, L.B., Gorbatenko, V.V., and Polyakov, S.N., Proc. SPIE (Intern. Soc. Opt. Eng.), 2002, vol. 4900, part 2, pp. 1197–1208.

    Article  CAS  Google Scholar 

  4. Sofronis, P., Liang, Y., and Aravas, N., J. Mech. A, Solids, 2001, vol. 20, pp. 857–872.

    Article  Google Scholar 

  5. Kireeva, I.V. and Chumlyakov, Yu.I., Fiz. Met. Metallov., 2009, vol. 108, no. 3, pp. 313–324.

    CAS  Google Scholar 

  6. Yagodzinskyy, Yu., Tarasenko, O., Smuk, S., Aaltonen, P., and Hänninem, H., Phys. Scripta, 2001, vol. 94, pp. 11–120.

    Google Scholar 

  7. Kuprekova, E.I., Chumlyakov, Yu.I., and Chernov, I.P., Metallov. Term. Obrab. Met., 2008, no. 6(636), pp. 24–30.

    Google Scholar 

  8. Berner, R. and Kronmuller, G., Plastische Verformung von Einkristallen, Berlin: Springer, 1965.

    Google Scholar 

  9. Saltykov, S.L., Stereometricheskaya metallografiya (Stereometric Metallography), Moscow: Metallurgiya, 1970.

    Google Scholar 

  10. Kireeva, I.V., Chumlyakov, Yu.I., Tverskov, A.V., and Maier, H., PZhTF, 2011, vol. 37, no. 11, pp. 65–72.

    Google Scholar 

  11. Gavrilyuk, V.G. and Shivanyuk, V.N., Metallov. Term. Obrab. Met., 2008, no. 6(636), pp. 11–15.

    Google Scholar 

  12. Birnbaum, N.K. and Sofronis, P., Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.

    Article  CAS  Google Scholar 

  13. Terlink, D., Zok, F., Embry, J.D., and Ashby, M.F., Acta Met., 1988, vol. 36, pp. 1213–1228.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.V. Shlyakhova, S.A. Barannikova, L.B. Zuev, D.A. Kosinov, 2013, published in “Izvestiya VUZ. Chernaya Metallurgiya,” 2013, No. 8, pp. 37–42.

About this article

Cite this article

Shlyakhova, G.V., Barannikova, S.A., Zuev, L.B. et al. Localization of plastic deformation in alloyed γ-iron single crystals electrolytically saturated with hydrogen. Steel Transl. 43, 480–484 (2013). https://doi.org/10.3103/S0967091213080147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091213080147

Keywords

Navigation