Skip to main content
Log in

Ionospheric Processes during the Partial Solar Eclipse above Kharkiv on June 10, 2021

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

A solar eclipse (SE) provides a researcher with a rare opportunity to follow the dynamics of the Earth’s system (its shells)—the atmosphere, the ionosphere, and the magnetosphere—and variations in the geophysical fields over an interval of a few hours. Different solar eclipses induce significantly different disturbances in this system. The parameters of these disturbances depend on the onset time of a solar eclipse, the state of space weather, the season, the solar cycle phase, the geographic coordinates, and the degree of the solar disk occultation during a solar eclipse. It should be kept in mind that each of the SEs exhibits its own individual characteristics. The purpose of this paper is to analyze the results of ionosonde observations of the ionospheric disturbances accompanying the SE above the city of Kharkiv on June 10, 2021. At the city of Kharkiv, the maximal observed magnitude of the SE was Мmax ≈ 0.11 (more precisely, 0.112) and the relative area of the solar disk occultation was Аmax ≈ 4.4%. The eclipse started at 10:42 UT (13:42 LT) and ended at 12:12 UT (15:12 LT). The maximal magnitude was observed at 11:28 UT (14:28 LT). To study the features of variations in the virtual heights and the frequencies, we used a digital ionosonde located at the Radio Physical Observatory of the V. N. Karazin Kharkiv National University. The analysis of the space weather showed that, during the SE, as well as at the reference time intervals on June 6 and 9, 2021, the space weather conditions were favorable for observing wave disturbances, which is evidenced by the index value Kp ≈ 0.3. The frequency and altitude characteristics of the ionosphere obtained by vertical sounding were analyzed, and the features of the ionospheric processes, which accompanied the partial SE but were absent on the reference day, were determined. During the SE, wave activity in the ionosphere became stronger. The wave trains, which were observed at an altitude of the F2 layer maximum, had periods of 5 and 14 min, while the relative amplitudes of oscillations in the electron density were 0.6 and 1.25%, respectively. At an altitude of 240 km, the relative amplitude of waves with a period of ~14 min increased by 3%. The 14-min period pertains to the atmospheric gravitaty waves, while the 5-min period pertains to the waves of electromagnetic nature. A sharp and considerable increase (from 380 to 560 km) in the virtual height of the radio wave reflection from the F2 region was observed close to the moment of the greatest SE magnitude. A weak decrease (by less than 3.3%) in the electron density, which lagged behind the maximal eclipse magnitude by 12.5 min, was detected. The rates of the electron loss (1.33 × 10–3 s–1) and the ion production (3 × 108 m–3s–1) were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. A. Akimov, E. I. Grigorenko, V. I. Taran, O. F. Tyrnov, and L. F. Chernogor, “Integrated radio physical and optical studies of dynamic processes in the atmosphere and geospace caused by the solar eclipse of August 11, 1999,” Zarub. Radioelektron. Usp. Sovrem. Radioelektron., No. 2, 25–63 (2002).

  2. L. A. Akimov, E. I. Grigorenko, V. I. Taran, and L. F. Chernogor, “Features of the atmospheric and ionospheric effects of the solar eclipse of May 31, 2003: The results of the optical and radio physical observations in Kharkiv,” Usp. Sovrem. Radioelektron., No. 3, 55–70 (2005).

  3. E. L. Afraimovich, S. V. Voeikov, N. P. Perevalova, V. V. Vodyannikov, G. I. Gordienko, Yu. G. Litvinov, and A. F. Yakovets, “Ionospheric effects of the March 29, 2006, solar eclipse over Kazakhstan,” Geomagn. Aeron. (Engl. Transl.) 47, 461–469 (2007).

  4. V. V. Belikovich, V. D. Vyakhirev, E. E. Kalinina, V. D. Tereshchenko, S. M. Chernyaev, and V. A. Tereshchenko, “Ionospheric response to the partial solar eclipse of March 29, 2006, according to the observations at Nizhni Novgorod and Murmansk,” Geomagn. Aeron. (Engl. Transl.) 48, 98–103 (2007).

  5. B. B. Borisov, D. A. Egorov, N. E. Egorov, A. G. Kolesnik, S. A. Kolesnik, V. P. Mel’chinov, P. M. Nagorskii, S. S. Parfenov, D. D. Reshetnikov, V. F. Smirnov, A. E. Stepanov, Yu. E. Tarashchuk, E. D. Tel’pukhovskii, B. B. Tsybikov, and B. M. Shinkevich, “A comprehensive experimental study of the ionospheric response to the solar eclipse of March 9, 1997,” Geomagn. Aeron. (Engl. Transl.) 40, 359–367 (2000).

  6. B. E. Bryunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  7. V. P. Burmaka, V. N. Lysenko, M. V. Lyashenko, and L. F. Chernogor, “Tropospheric-ionospheric effects of the 3 October 2005 partial solar eclipse in Kharkiv. 1. Observations,” Kosm. Nauka Tekhnol. 13 (6), 74–86 (2007). https://doi.org/10.15407/knit2007.06.074

    Article  Google Scholar 

  8. K. N. Vasil’ev, A. S. Veleshin, and A. R. Kosenkov, “Ionospheric effects of the solar eclipse of February 15, 1961, according to the Moscow observations,” Geomagn. Aeron. 1, 277–278 (1961).

    Google Scholar 

  9. A. M. Gokov and L. F. Chernogor, “Processes in lower ionosphere during August 11, 1999 solar eclipse,” Radiofiz. Radioastron. 5, 348–360 (2000).

    Google Scholar 

  10. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

  11. L. V. Grishkevich and V. A. Vasin, “On the effects of the ionosphere observed during a solar eclipse of December 02, 1956, and December 02, 1961, in Gorky,” Geomagn. Aeron. 1, 949–954 (1961).

    Google Scholar 

  12. N. P. Danilkin, N. A. Kochenova, and A. M. Svechnikov, “State of the ionosphere over Rostov-on-Don during the solar eclipse of February 15, 1961,” Geomagn. Aeron. 1, 612–615 (1961).

    Google Scholar 

  13. I. F. Domnin, L. Ya. Emel’yanov, and L. F. Chernogor, “The dynamics of ionosphere plasma over Kharkiv during the solar eclipse of January 4, 2011,” Radiofiz. Radioastron. 17, 132–145 (2012).

    Google Scholar 

  14. S. B. Kashcheev, A. V. Zalizovskii, A. V. Koloskov, V. G. Galushko, I. I. Pikulik, Yu. M. Yampol’skii, V. I. Kurkin, G. I. Litovkin, and A. I. Orlov, “Frequency variations of HF signals at long-range radio paths during a solar eclipse,” Radiofiz. Radioastron. 14, 353–366 (2009).

    Google Scholar 

  15. A. A. Kovalev, A. G. Kolesnik, S. A. Kolesnik, A. A. Kolmakov, and R. R. Latypov, “Ionospheric effects of solar eclipses at midlatitudes,” Geomagn. Aeron. (Engl. Transl.) 49, 476–482 (2009).

  16. R. D. Sukhanova, “Ionospheric effects of the solar eclipse of February 15, 1961, on observations to the Salekhard,” Geomagn. Aeron. 1, 1066–1067 (1961).

    Google Scholar 

  17. V. P. Uryadov, A. M. Leonov, and A. A. Ponyatov, “On variations of the characteristics of the HF signal on a line oblique sounding during the solar eclipse of August 11, 1999,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 43, 682–686 (2000).

    Google Scholar 

  18. L. F. Chernogor, Physical Effects of Solar Eclipses in Atmosphere and Geospace (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2013) [in Russian].

  19. L. F. Chernogor, “Wave processes in the ionosphere over Europe that accompanied the solar eclipse of March 20, 2015,” Kinematics Phys. Celestial Bodies 32, 196–206 (2016). https://doi.org/10.3103/S0884591316040024

    Article  ADS  Google Scholar 

  20. L. F. Chernogor and V. V. Barabash, “The response of the middle ionosphere to the solar eclipse of 4 January 2011 in Kharkiv: Some results of vertical sounding,” Kosm. Nauka Tekhnol. 17 (4), 41–52 (2011). https://doi.org/10.15407/knit2011.04.041

    Article  Google Scholar 

  21. L. F. Chernogor and V. V. Barabash, “The effects of solar eclipse of March 20, 2015 over ionosphere of Europe: Ionosonde observations,” Radiofiz. Radioastron. 20, 311–331 (2015). https://doi.org/10.15407/rpra20.04.311

    Article  Google Scholar 

  22. B. S. Shapiro and V. M. Shashun’kina, “Movement in the F region of the ionosphere over Tbilisi during the eclipse of February 15, 1961,” Geomagn. Aeron. 1, 760–765 (1961).

    Google Scholar 

  23. V. M. Shashun’kina and R. I. Turbin, “Preliminary observations of ionospheric effects of solar eclipse of February 15, 1961,” Geomagn. Aeron. 1, 835–838 (1961).

    Google Scholar 

  24. J. O. Adeniyi, S. M. Radicella, I. A. Adimula, A. A. Willoughby, O. A. Oladipo, and O. Olawepo, “Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station,” J. Geophys. Res.: Space Phys. 112, A06314 (2007). https://doi.org/10.1029/2006JA012197

    Article  ADS  Google Scholar 

  25. E. L. Afraimovich, K. S. Palamartchouk, N. P. Perevalova, V. V. Chernukhov, A. V. Lukhnev, and V. T. Zalutsky, “Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data,” Geophys. Res. Lett. 25, 465–468 (1998). https://doi.org/10.1029/98GL00186

    Article  ADS  Google Scholar 

  26. L. A. Akimov, V. K. Bogovskii, E. I. Grigorenko, V. I. Taran, and L. F. Chernogor, “Atmospheric–ionospheric effects of the solar eclipse of May 31, 2003, in Kharkov,” Geomagn. Aeron. (Engl. Transl.) 45, 494–518 (2005).

  27. A. L. Akimov and L. F. Chernogor, “Effects of the solar eclipse of August 1, 2008, on the Earth’s lower atmosphere,” Kinematics Phys. Celestial Bodies 26, 135–145 (2010). https://doi.org/10.3103/S0884591310030050

    Article  ADS  Google Scholar 

  28. F. Bertin, K. A. Hughes, and L. Kersley, “Atmospheric waves induced by the solar eclipse of 30 June, 1973,” J. Atmos. Terr. Phys. 39, 457–461 (1977). https://doi.org/10.1016/0021-9169(77)90153-2

    Article  ADS  Google Scholar 

  29. V. P. Burmaka and L. F. Chernogor, “Solar eclipse of August 1, 2008, above Kharkov: 2. Observation results of wave disturbances in the ionosphere,” Geomagn. Aeron. (Engl. Transl.) 53, 479–491 (2013). https://doi.org/10.1134/S001679321304004X

  30. G. Chen, Z. Zhao, G. Yang, C. Zhou, M. Yao, T. Li, S. Huang, and N. Li, “Enhancement and HF Doppler observations of sporadic-E during the solar eclipse of 22 July 2009,” J. Geophys. Res.: Space Phys. 115, A09325 (2010). https://doi.org/10.1029/2010JA015530

    Article  ADS  Google Scholar 

  31. G. Chen, Z. Zhao, B. Ning, Z. Deng, G. Yang, C. Zhou, M. Yao, S. Li, and N. Li, “Latitudinal dependence of the ionospheric response to solar eclipse of 15 January, 2010,” J. Geophys. Res.: Space Phys 116, A06301 (2011). https://doi.org/10.1029/2010JA016305

    Article  ADS  Google Scholar 

  32. K. Cheng, Y. N. Huang, and S. W. Chen, “Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region,” J. Geophys. Res.: Space Phys. 97, 103–111 (1992). https://doi.org/10.1029/91JA02409

    Article  ADS  Google Scholar 

  33. L. F. Chernogor, “Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results,” Geomagn. Aeron. (Engl. Transl.) 48, 652–673 (2008). https://doi.org/10.1134/S0016793208050101

  34. L. F. Chernogor, “Variations in the Amplitude and Phase of VLF radiowaves in the ionosphere during the August 1, 2008, solar eclipse,” Geomagn. Aeron. (Engl. Transl.) 50, 96–106 (2010). https://doi.org/10.1134/S0016793210010111

  35. L. F. Chernogor, “Wave response of the ionosphere to the partial solar eclipse of August 1, 2008,” Geomagn. Aeron. (Engl. Transl.) 50, 346–361 (2010). https://doi.org/10.1134/S0016793210030096

  36. L. F. Chernogor, “Dynamic processes in the near-ground atmosphere during the solar eclipse of August 1, 2008,” Izv., Atmos. Ocean. Phys. 47, 77–86 (2011). https://doi.org/10.1134/S000143381101004X

    Article  Google Scholar 

  37. L. F. Chernogor, “Effects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data,” Geomagn. Aeron. (Engl. Transl.) 52, 768–778 (2012). https://doi.org/10.1134/S0016793212050039

  38. L. F. Chernogor, “Effects of solar eclipses in the ionosphere: Doppler sounding results: 2. Spectral analysis,” Geomagn. Aeron. (Engl. Transl.) 52, 779–792 (2012). https://doi.org/10.1134/S0016793212050040

  39. L. F. Chernogor, “Physical processes in the middle ionosphere accompanying the solar eclipse of January 4, 2011, in Kharkov,” Geomagn. Aeron. (Engl. Transl.) 53, 19–31 (2013). https://doi.org/10.1134/S0016793213010052

  40. L. F. Chernogor, Ye. I. Grigorenko, and M. V. Lyashenko, “Effects in geospace during partial solar eclipses over Kharkiv,” Int. J. Remote Sens. 32, 3219–3229 (2014). https://doi.org/10.1080/01431161.2010.541509

    Article  Google Scholar 

  41. E. A. Cohen, “The study of the effect of solar eclipses on the ionosphere based on satellite beacon observations,” Radio Sci. 19, 769–777 (1984). https://doi.org/10.1029/RS019i003p00769

    Article  ADS  Google Scholar 

  42. I. F. Domnin, L. Ya. Yemel’yanov, D. V. Kotov, M. V. Lyashenko, and L. F. Chernogor, “Solar eclipse of August 1, 2008, above Kharkov: 1. Results of incoherent scatter observations,” Geomagn. Aeron. (Engl. Transl.) 53, 113–123 (2013). https://doi.org/10.1134/S0016793213010076

  43. I. F. Domnin, L. Y. Emelyanov, M. V. Lyashenko, and L. F. Chernogor, “Partial solar eclipse of January 4, 2011 above Kharkiv: Observation and simulations results,” Geomagn. Aeron. (Engl. Transl.) 54, 583–592 (2014). https://doi.org/10.1134/S0016793214040112

  44. W. H. Eccles, “Effect of the eclipse on wireless telegraphic signals,” Electrician 69, 109–117 (1912).

    Google Scholar 

  45. J. V. Evans, “An F region eclipse,” J. Geophys. Res. 70, 131–142 (1965). https://doi.org/10.1029/JZ070i001p00131

    Article  ADS  Google Scholar 

  46. T. Farges, J. C. Jodogne, R. Bamford, Y. Le. Roux, F. Gauthier, P. M. Vila, D. Altadill, J. G. Sole, and G. Miro, “Disturbances of the western European ionosphere during the total solar eclipse of 11 August 1999 measured by a wide ionosonde and radar network,” J. Atmos. Sol.-Terr. Phys. 63, 915–924 (2001). https://doi.org/10.1016/S1364-6826(00)00195-4

    Article  ADS  Google Scholar 

  47. D. Founda, D. Melas, S. Lykoudis, I. Lisaridis, E. Gerasopoulos, G. Kouvarakis, M. Petrakis, and C. Zerefos, “The effect of the total solar eclipse of 29 March 2006 on meteorological variables in Greece,” Atmos. Chem. Phys. 7, 5543–5553 (2007). https://doi.org/10.5194/acp-7-5543-2007

    Article  ADS  Google Scholar 

  48. K. P. Garmash, S. G. Leus, and L. F. Chernogor, “Radiophysical effects of the January 4, 2011 solar eclipse as observed in the parameters of obliquely propagating HF signals,” Radio Phys. Radio Astron. 2, 325–337 (2011). https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.50

    Article  ADS  Google Scholar 

  49. E. I. Grigorenko, M. V. Lyashenko, and L. F. Chernogor, “Effects of the solar eclipse of March 29, 2006, in the ionosphere and atmosphere,” Geomagn. Aeron. (Engl. Transl.) 48, 337–351 (2008).

  50. C. R. Huang, C. H. Liu, K. C. Yeh, K. H. Lin, W. H. Tsai, H. C. Yeh, and J. Y. Liu, “A study of tomographically reconstructed ionospheric images during a solar eclipse,” J. Geophys. Res.: Space Phys. 104, 79–94 (1999). https://doi.org/10.1029/98JA02531

    Article  ADS  Google Scholar 

  51. A. N. Hunter, B. K. Holman, D. G. Feldgate, and R. Kelleher, “Faraday rotation studies in Africa during the solar eclipse of June 30, 1973,” Nature 250, 205–206 (1974). https://doi.org/10.1038/250205a0

    Article  ADS  Google Scholar 

  52. N. Jakowski, S. M. Stankov, V. Wilken, C. Borries, D. Altadill, J. Chum, D. Buresova, J. Boska, P. Sauli, F. Hruska, and Lj. R. Cander, “Ionospheric behavior over Europe during the solar eclipse of 3 October 2005,” J. Atmos. Sol.-Terr. Phys. 70, 836–853 (2008). https://doi.org/10.1016/j.jastp.2007.02.016

    Article  ADS  Google Scholar 

  53. J. A. Klobuchar and H. E. Whitney, “Ionospheric electron content measurements during a solar eclipse,” J. Geophys. Res. 70, 1254–1257 (1965). https://doi.org/10.1029/JZ070i005p01254

    Article  ADS  Google Scholar 

  54. H. Le, L. Liu, X. Yue, and W. Wan, “The ionospheric responses to the 11 August 1999 solar eclipse: Observations and modeling,” Ann. Geophys. 26, 107–116 (2008). https://doi.org/10.5194/angeo-26-107-2008

    Article  ADS  Google Scholar 

  55. H. Le, L. Liu, X. Yue, W. Wan, and B. Ning, “Latitudinal dependence of the ionospheric response to solar eclipse,” J. Geophys. Res.: Space Phys. 114, A07308 (2009). https://doi.org/10.1029/2009JA014072

    Article  ADS  Google Scholar 

  56. M. V. Lyashenko and L. F. Chernogor, “Solar eclipse of August 1, 2008, over Kharkov: 3. Calculation results and discussion,” Geomagn. Aeron. (Engl. Transl.) 53, 367–376 (2013). https://doi.org/10.1134/S0016793213020096

  57. H. R. Mimno and P. H. Wang, “Continuous Kennelley–Heaviside layer records of a solar eclipse (with suggestions of a corpuscular effect on Appleton layer),” Proc. Inst. Radio Eng. 21, 529–545 (1933).

    Google Scholar 

  58. J. E. Salah, W. L. Oliver, J. C. Foster, and J. M. Holt, “Observations of the May 30, 1984, annular solar eclipse at Millstone Hill,” J. Geophys. Res.: Space Phys. 91, 1651–1660 (1986). https://doi.org/10.1029/JA091iA02p01651

    Article  ADS  Google Scholar 

  59. R. W. Schunk and A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  60. A. Sen Gupta, G. K. Goel, and B. S. Mathur, “Effect of the 16 February 1980 solar eclipse on VLF propagation,” J. Atmos. Terr. Phys. 42, 907–909 (1980). https://doi.org/10.1016/0021-9169(80)90107-5

    Article  ADS  Google Scholar 

  61. A. T. Tomas, H. Luhr, M. Forster, S. Rentz, and M. Rother, “Observations of the low-latitude solar eclipse on 8 April 2005 by CHAMP,” J. Geophys. Res.: Space Phys. 112, A06303 (2007). https://doi.org/10.1029/2006JA012168

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the National Research Foundation of Ukraine (grant no. 2020.02/0015; “Theoretical and Experimental Studies of Global Perturbations of Natural and Man-Made Origin in the Earth-Atmosphere-Ionosphere system”) and partially supported by the state budget through the research projects of the Ministry of Education and Science of Ukraine (state registration nos. 0121U109881 and 0121U109882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Additional information

Translated by E. Petrova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F., Garmash, K.P. Ionospheric Processes during the Partial Solar Eclipse above Kharkiv on June 10, 2021. Kinemat. Phys. Celest. Bodies 38, 61–72 (2022). https://doi.org/10.3103/S0884591322020039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591322020039

Keywords:

Navigation