Skip to main content
Log in

Attenuation of Acoustic-Gravity Waves in an Isothermal Atmosphere: Consideration with the Modified Navier-Stokes and Heat-Transfer Equations

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

Within the model of a dissipative isothermal atmosphere, the attenuation of acoustic−gravity waves (AGWs) is studied on the basis of the modified Navier−Stokes and heat-transfer equations. Besides the usually considered velocity gradient, the modification of these equations takes into account the additional transfer of the momentum and energy induced by AGWs due to the density gradient. This results in that additional terms appear in the hydrodynamic equations of motion and heat transfer. Under these assumptions, the local dispersion equation for AGWs in an isothermal dissipative atmosphere, as well as an expression for the damping decrement, is obtained. In the limiting cases of high frequencies (sound waves) and low frequencies (gravitational waves), the nature of the attenuation allows a clear physical interpretation. Special aspects of the time-dependent attenuation for the evanescent acoustic−gravity modes of various types, including the Lamb waves and Brent−Väisälä oscillations, are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yu. P. Ladikov-Roev and O. K. Cheremnykh, Mathematical Models of Continuous Media (Naukova Dumka, Kyi-v, 2010) [in Russian].

    Google Scholar 

  2. Yu. P. Ladikov-Roev, O. K. Cheremnykh, A. K. Fedorenko, and V. E. Nabivach, “Acoustic-gravitational waves in a vortex polar thermosphere,” Probl. Upr. Inf., No. 5, 74–84 (2015).

  3. L. D. Landau and E. M. Lifshits, A Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

  4. P. V. Lebedev-Stepanov, “Flow of a viscous compressible medium: Invalidity of the Navier–Stokes equation,” Dokl. Phys. Chem. 417, 319–324 (2007).

    Article  Google Scholar 

  5. G. V. Lizunov and A. Yu. Leont’ev, “Height of the penetration into the ionosphere for internal atmosphere gravity waves,” Kosm. Nauka Tekhnol. 20 (4), 31–41 (2014).

    Article  Google Scholar 

  6. A. K. Fedorenko and E. I. Kryuchkov, “Distribution of medium-scale acoustic gravity waves in polar regions according to satellite measurement data,” Geomagn. Aeron. (Engl. Transl.) 51, 520–533 (2011).

  7. O. K. Cheremnykh, Yu. A. Selivanov, and I. V. Zakharov, “The influence of compressibility and nonisothermality of the atmosphere on the propagation of acousto-gravity waves,” Kosm. Nauka Tekhnol. 16 (1), 9–19 (2010).

    Article  Google Scholar 

  8. T. Beer, Atmospheric Waves (Wiley, New York, 1974).

    Google Scholar 

  9. O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchko, and Y. A. Selivanov, “Evanescent acoustic-gravity modes in the isothermal atmosphere: Systematization, applications to the Earth’s and Solar atmospheres,” Ann. Geophys. 37, 405–415 (2019).

    Article  ADS  Google Scholar 

  10. M. S. Cramer, “Numerical estimates for the bulk viscosity of ideal gases,” Phys. Fluids 24, 066102 (2012). https://doi.org/10.1063/1.4729611

    Article  ADS  Google Scholar 

  11. A. Dalgarno and F. J. Smith, “The viscosity and thermal conductivity of atomic oxygen,” Planet. Space. Sci. 9 (1–2) (1962).

  12. A. K. Fedorenko, A. V. Bespalova, O. K. Cheremnykh, and E. I. Kryuchkov, “A dominant acoustic-gravity mode in the polar thermosphere,” Ann. Geophys. 33, 101–108 (2015). https://doi.org/10.5194/angeo-33-101-2015

    Article  ADS  Google Scholar 

  13. S. H. Francis, “Global propagation of atmospheric gravity waves: A review,” J. Atmos. Terr. Phys. 37, 1011–1054 (1975).

    Article  ADS  Google Scholar 

  14. D. C. Fritts and S. L. Vadas, “Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds,” Ann. Geophys. 26, 3841–3861 (2008). http://www.ann-geophys.net/26/3841/2008/.

    Article  ADS  Google Scholar 

  15. C. O. Hines, “Internal gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441–1481 (1960).

    Article  ADS  Google Scholar 

  16. J. L. Innis and M. Conde, “Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data,” J. Geophys. Res.: Space Phys. 107, 1 (2002). https://doi.org/10.1029/2002JA009370

    Article  Google Scholar 

  17. F. S. Johnson, W. B. Hanson, R. R. Hodges, W. R. Coley, G. R. Carignan, and N. W. Spencer, “Gravity waves near 300 km over the polar caps,” J. Geophys. Res.: Space Phys. 100, 23993–24002 (1995).

    Article  ADS  Google Scholar 

  18. W. L. Jones, “Non-divergent oscillations in the solar atmosphere,” Sol. Phys. 7, 204–209 (1969).

    Article  ADS  Google Scholar 

  19. P. Kundu, Fluid Dynamics (Elsevier, New York, 1990).

    Google Scholar 

  20. I. Tolstoy, “The theory of waves in stratified fluids including the effects of gravity and rotation,” Rev. Mod. Phys. 35 (1) (1963).

  21. S. L. Vadas and M. J. Fritts, “Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity,” J. Geophys. Res.: Atmos. 110, D15103 (2005). https://doi.org/10.1029/2004JD005574

    Article  ADS  Google Scholar 

  22. S. L. Vadas and D. C. Nicolls, “The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory,” J. Geophys. Res.: Space Phys. 117, A05322 (2012). https://doi.org/10.1029/2011JA017426

    Article  ADS  Google Scholar 

  23. R. L. Waltercheid and J. H. Hecht, “A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance,” J. Geophys. Res.: Atmos. 108, 4340 (2003). https://doi.org/10.1029/2002JD002421

    Article  ADS  Google Scholar 

  24. M. Yanowitch, “Effect of viscosity on vertical oscillations of an isothermal atmosphere,” Can. J. Phys. 45, 2003–2008 (1967).

    Article  ADS  Google Scholar 

  25. K. S. Yeh and C. H. Liu, “Acoustic-gravity waves in the upper atmosphere,” Rev. Geophys. Space. Phys. 12, 193–216 (1974).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by a grant of National Research Foundation of Ukraine 2020.02/0015 “Theoretical and experimental studies of global perturbations of natural and artifical origin in the Earth-Atmosphere-Ionosphere system.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Fedorenko, E. I. Kryuchkov or O. K. Cheremnykh.

Additional information

Translated by E. Petrova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, A.K., Kryuchkov, E.I. & Cheremnykh, O.K. Attenuation of Acoustic-Gravity Waves in an Isothermal Atmosphere: Consideration with the Modified Navier-Stokes and Heat-Transfer Equations. Kinemat. Phys. Celest. Bodies 36, 212–221 (2020). https://doi.org/10.3103/S0884591320050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320050049

Keywords:

Navigation