Skip to main content
Log in

Verification of Einstein’s Formula for Gravitational Deflection of Light Using Observations of Galactic Microlensing

  • EXTRAGALACTIC ASTRONOMY
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

General relativity (GR) has a solid experimental base. However, the emergence of new experimental capabilities and independent observational information stimulates continuing tests of general relativity. The purpose of this work is to evaluate the potential of gravitational microlensing of distant sources on the stars of our Galaxy and to verify Einstein’s formula of gravitational refraction. This effect has been repeatedly tested in the Solar System in high-accuracy experiments with the propagation of radio waves, when the measurements are most effective for the distances from the signal trajectory to the Sun on the order of several solar radii. In the case of galactic microlensing, a quite different type of observational data and other characteristic distances are used that are determined in the high magnification events by the Einstein ring radii, which is typically of the order of 1 AU. Although the gravitational deflections of light by stars are very small and currently practically inaccessible by direct measurements, nonetheless, due to the large distances to the microlenses, the radiation flux from the source in strong microlensing events can increase several times. To verify Einstein’s formula, a more general dependence of the beam deflection angle \(\alpha \propto 1/{{p}^{{1 + \varepsilon }}}\) on its impact distance p relative to the deflector is considered and, accordingly, the equations of gravitational lensing are modified. The challenge is to limit ε based on observational data. The Early Warning System data obtained in 2018 within the Optical Gravitational Lensing Experiment (OGLE) (http://ogle.astrouw.edu.pl/ogle4/ ews/2019/ews.html) was used. A sample of 100 light curves from the data obtained by the OGLE group in 2018 was formed. Each light curve was fitted as part of a modified model of gravitational lensing with parameter ε. As a result, 100 values of ε and estimates of their variances were obtained. It was found that the mean value of ε does not contradict GR within the limits of a one percent standard deviation. In the future, using a larger number of light curves will allow one to hope for a significant decrease in the error of ε due to statistical averaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. N. Aleksandrov, I. B. Vavilova, V. I. Zhdanov, A. I. Zhuk, Yu. N. Kudrya, S. L. Parnovskii, E. V. Fedorova, and Ya. S. Yatskiv, General Relativity Theory: Recognition through Time (Naukova Dumka, Kyiv, 2015) [in Russian].

    Google Scholar 

  2. A. N. Aleksandrov, V. I. Zhdanov, and V. M. Sliusar, “Verification of Einstein’s formula for gravitational deflection of light using observations of galactic microlensing,” Visn. Kyiv. Nats. Univ. Astron. 59 (1), 18–22 (2019).

    Google Scholar 

  3. C. Alcock, R. A. Allsman, D. Alves, T. S. Axelrod, D. Baines, A. C. Becker, D. P. Bennett, A. Bourke, A. Brakel, K. H. Cook, et al., “Binary microlensing events from the MACHO project,” Astrophys. J. 541, 270 (2000).

    Article  ADS  Google Scholar 

  4. V. M. Shulga, V. I. Zhdanov, A. N. Alexandrov, P. P. Berczik, E. P. Pavlenko, Ya. V. Pavlenko, L. S. Pilyugin, and V. S. Tsvetkova, Dark Energy and Dark Matter in the Universe: In Three Volumes, Vol. 2: Dark Matter: Astrophysical Aspects of the Problem, Ed. by V. Shulga (Akademperiodyka, Kyiv, 2014), ch. 1–2.

  5. S. Dong, A. Mérand, F. Delplancke-Ströbele, A. Gould, P. Chen, R. Post, C. S. Kochanek, K. Z. Stanek, G. W. Christie, R. Mutel, et al., “First resolution of microlensed images,” Astrophys. J. 871, 70 (2019).

    Article  ADS  Google Scholar 

  6. A. Einstein, “Die Grundlage der allgemeinen Relativitätstheorie,” Ann. Phys. (Berlin, Ger.) 49, 769–822 (1916).

  7. E. Fedorova, V. M. Sliusar, V. I. Zhdanov, A. N. Alexandrov, A. Del Popolo, and J. Surdej, “Gravitational microlensing as a probe for dark matter clumps,” Mon. Not. R. Astron. Soc. 457, 4147–4159 (2016).

    Article  ADS  Google Scholar 

  8. B. S. Gaudi, “Microlensing surveys for exoplanets,” Annu. Rev. Astron. Astrophys. 50, 411 (2012).

    Article  ADS  Google Scholar 

  9. C. R. Keeton and A. O. Petters, “Formalism for testing theories of gravity using lensing by compact objects. I: Static, spherically symmetric case,” Phys. Rev. D 72, 104006 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  10. C. R. Keeton and A. O. Petters, “Formalism for testing theories of gravity using lensing by compact objects. II: Probing Post-Post-Newtonian metrics,” Phys. Rev. D 73, 044024 (2006).

    Article  ADS  Google Scholar 

  11. H. Liu, X. Wang, H. Li, and Y. Ma, “Distinguishing f(R) theories from general relativity by gravitational lensing effect,” Eur. Phys. J. C 77, 723 (2017).

    Article  ADS  Google Scholar 

  12. M. Lubini, C. Tortora, J. Näf, P. Jetzer, and S. Capozziello, “Probing the dark matter issue in f(R)-gravity via gravitational lensing,” Eur. Phys. J. C 71, 1834 (2011).

    Article  ADS  Google Scholar 

  13. M. Milgrom, “Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing,” Phys. Rev. Lett. 111, 041105 (2013).

    Article  ADS  Google Scholar 

  14. B. Paczyński, “Gravitational microlensing by the galactic halo,” Astrophys. J. 304, 1–5 (1986).

    Article  ADS  Google Scholar 

  15. Sh. Poindexter, C. Afonso, D. P. Bennett, J.-F. Glicenstein, A. Gould, M. K. Szymański, and A. Udalski, “Systematic analysis of 22 microlensing parallax candidates,” Astrophys. J. 633, 914 (2005).

    Article  ADS  Google Scholar 

  16. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (Springer-Verlag, Berlin, 1992).

    Book  Google Scholar 

  17. M. C. Smith, Sh. Mao, and B. Paczyński, “Acceleration and parallax effects in gravitational microlensing,” Mon. Not. R. Astron. Soc. 339, 925 (2003).

    Article  ADS  Google Scholar 

  18. Y. Tsapras, A. Cassan, C. Ranc, E. Bachelet, R. Street, A. Udalski, M. Hundertmark, V. Bozza, J. P. Beaulieu, J. B. Marquette, et al., “An analysis of binary microlensing event OGLE-2015-BLG-0060,” Mon. Not. R. Astron. Soc. 487, 4603 (2019).

    Article  ADS  Google Scholar 

  19. A. Udalski, M. Szymański, J. Kaluzny, M. Kubiak, W. Krzemiński, M. Mateo, G. W. Preston, and B. Paczyński, “The optical gravitational lensing experiment. Discovery of the first candidate microlensing event in the direction of the galactic bulge,” Acta Astron. 43, 289–294 (1993).

    ADS  Google Scholar 

  20. A. Udalski, M. K. Szymański, and G. Szymański, “OGLE-IV: Fourth phase of the optical gravitational lensing experiment,” Acta Astron. 65, 1–38 (2015).

    ADS  Google Scholar 

  21. C. M. Will, “The confrontation between general relativity and experiment,” Living Rev. Relativ. 17, 4 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study relies essentially on data obtained in 2018 during the implementation of the Optical Gravitational Lensing Experiment, Phase IV Program (http://ogle.astrouw.edu.pl/ogle4/ews/ews.html) [19, 20].

Funding

The work was carried out within the framework of project no. 19BF023-01 of the Astronomy and Physics of Space Program of the National Taras Shevchenko University of Kiev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Alexandrov.

Additional information

Translated by E. Seifina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, A.N., Zhdanov, V.I. & Sliusar, V.M. Verification of Einstein’s Formula for Gravitational Deflection of Light Using Observations of Galactic Microlensing. Kinemat. Phys. Celest. Bodies 36, 205–211 (2020). https://doi.org/10.3103/S0884591320050025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320050025

Keywords:

Navigation