Skip to main content
Log in

Solar Faculae: Microturbulence as an Indicator of Inclined Magnetic Fields

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

The observations of the solar facula in the Ba II λ 455.403 Å line are used to construct a 3D model of the facula area by solving the inverse nonequilibrium radiative transfer problem and to investigate the fine structure of the field of unresolved velocities (microturbulence). New turbulent structures are formed in the layers of the upper photosphere. They are localized mainly between upward and downward flows with the formation of ring-shaped structures of increased turbulence around these flows. The mechanism of magnetic anisotropy of microturbulent velocity is proposed (small-scale eddy-type plasma motions mainly occur in the planes perpendicular to the magnetic field), which explains the height dependence of the field of unresolved velocities. Anisotropy of microturbulence begins to manifest itself in the lower photospheric layers outside the upward and downward flows, while it manifests itself in the higher layers inside these flows. The increase of microturbulence in the layers of the upper photosphere and the lower chromosphere in the areas between matter flows indicates the presence of inclined magnetic fields, which, along with the blurring of its spatial structure, indicates the existence of a magnetic canopy region. Microturbulence can be used as an additional tool for diagnostics of inclined magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. A. Gurtovenko and R. I. Kostyk, Fraunhofer Spectrum and a System of Solar Oscillator Strengths (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  2. M. I. Stodilka, “The Tychonoff stabilizers in inverse problems of spectral studies,” Kinematics Phys. Celestial Bodies 19, 229–235 (2003).

    Google Scholar 

  3. M. I. Stodilka, A. I. Prysiazhnyi, and R. I. Kostyk, “Features of convection in the atmosphere layers of the solar facula,” Kinematics Phys. Celestial Bodies 35, 261–270 (2019).

    Article  ADS  Google Scholar 

  4. M. Asplund, H. G. Ludwig, A. Nordlund, and R. F. Stein, “The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation,” Astron. Astrophys. 359, 669–681 (2000).

    ADS  Google Scholar 

  5. H. W. Babcock and H. D. Babcock, “The Sun’s magnetic field, 1952–1954,” Astrophys. J. 121, 349–366 (1955).

    Article  ADS  Google Scholar 

  6. J. H. M. J. Bruls and S. K. Solanki, “Infrared lines as probes of solar magnetic features. IX. Mg I 12 μm diagnostics of solar plage,” Astron. Astrophys. 293, 240–251 (1995).

    ADS  Google Scholar 

  7. D. Buehler, A. Lagg, S. K. Solanki, and M. van Noort, “Properties of solar plage from a spatially coupled in version of Hinode SP data,” Astron. Astrophys. 576, A27 (2015).

    Article  ADS  Google Scholar 

  8. C. Cowley, The Theory of Stellar Spectra (Gordon and Breach, New York, 1970).

    Google Scholar 

  9. A. Cristaldi and I. Ermolli, “1D atmosphere models from in version of Fe I 630 nm observations with an application to solar irradiance studies,” Astrophys. J. 841, 115 (2017).

    Article  ADS  Google Scholar 

  10. I. N. Kitiashvili, A. G. Kosovichev, S. K. Lele, N. N. Mansour, and A. A. Wray, “Ubiquitous solar eruptions driven by magnetized vortex tubes,” Astrophys. J. 770, 37 (2013).

    Article  ADS  Google Scholar 

  11. I. N. Kitiashvili, A. G. Kosovichev, N. N. Mansour, and A. A. Wray, “Mechanism of local dynamo action on the Sun” (2013). arXiv 1312.0982.2013.

  12. P. Kobel, S. K. Solanki, and J. M. Borrero, “The continuum intensity as a function of magnetic field. I. Active region and quiet Sun magnetic elements,” Astron. Astrophys. 531, A112 (2011).

    Article  ADS  Google Scholar 

  13. R. Kostik and E. Khomenko, “Properties of convective motions in facular regions,” Astron. Astrophys. 545, A22 (2012).

    Article  ADS  Google Scholar 

  14. R. Kostik and E. Khomenko, “Properties of oscillatory motions in a facular region,” Astron. Astrophys. 559, A107 (2013).

    Article  ADS  Google Scholar 

  15. R. Kostik and E. Khomenko, “The possible origin of facular brightness in the solar atmosphere,” Astron. Astrophys. 589, A6 (2016).

    Article  ADS  Google Scholar 

  16. R. Kostyk, “What are solar faculae?,” Kinematics Phys. Celestial Bodies 29, 32–36 (2013).

    Article  ADS  Google Scholar 

  17. B. W. Lites, “The solar neutral Iron spectrum. II: Profile synthesis of representative Fe I Fraunhofer lines,” Sol. Phys. 32, 283–306 (1973).

    Article  ADS  Google Scholar 

  18. M. J. Martínez González, L. R. Bellot Rubio, S. K. Solanki, et al., “Resolving the internal magnetic structure of the solar network,” Astrophys. J., Lett. 758, L40 (2012).

    Article  ADS  Google Scholar 

  19. V. Martínez Pillet, J. C. del Toro Iniesta, A. Álvarez-Herrero, et al., “The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory,” Sol. Phys. 268, 57–102 (2011).

    Article  ADS  Google Scholar 

  20. V. Martinez Pillet, B. W. Lites, and A. Skumanich, “Active region magnetic fields. I. Plage fields,” Astrophys. J. 474, 810–842 (1997).

    Article  ADS  Google Scholar 

  21. A. Nesis, R. Hammer, and H. Schleicher, “On the turbulence of the solar photosphere,” Bull. Am. Astron. Soc. 28, 820 (1996).

    ADS  Google Scholar 

  22. V. L. Olshevskiy, N. G. Shchukina, and I. E. Vasil’eva, “NLTE formation of the resonance Ba II line λ 455.4 nm in the solar atmosphere,” Kinematics Phys. Celestial Bodies 24, 145–158 (2008).

    Article  ADS  Google Scholar 

  23. A. Pietarila, R. Cameron, and S. K. Solanki, “Expansion of magnetic flux concentrations: A comparison of Hinode SOT data and models,” Astron. Astrophys. 518, A50 (2010).

    Article  ADS  Google Scholar 

  24. G. B. Scharmer, K. Bjelksjo, T. K. Korhonen, B. Lindberg, and B. Petterson, “The 1-meter Swedish solar telescope,” in Innovative Telescopes and Instrumentation for Solar Astrophysics, Waikoloa, HI, Aug. 24–28,2002, Ed. by S. L. Keil and S. V. Avakian (SPIE, Bellingham, WA, 2003), in Ser.: Proceedings of SPIE, Vol. 4853, pp. 341–350.

  25. N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko, “The solar Ba II 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model,” Astron. Astrophys. 506, 1393–1404 (2009).

    Article  ADS  Google Scholar 

  26. N. Shchukina, J. Trujillo Bueno, “Determining the magnetization of the quiet Sun photosphere from the Hanle effect and surface dynamo simulations,” Astrophys. J., Lett. 731, L21 (2011).

    Article  ADS  Google Scholar 

  27. H. Socas-Navarro, “A high-resolution three-dimensional model of the solar photosphere derived from Hinode observations,” Astron. Astrophys. 529, A37 (2011).

    Article  ADS  Google Scholar 

  28. S. K. Solanki, “Velocities in solar magnetic fluxtubes,” Astron. Astrophys. 168, 311–329 (1986).

    ADS  Google Scholar 

  29. S. K. Solanki, “Small scale solar magnetic fields — An overview,” Space Sci. Rev. 63, 1–188 (1993).

    Article  ADS  Google Scholar 

  30. S. K. Solanki, P. Barthol, S. Danilovic, et al., “SUNRISE: Instrument, mission, data, and first results,” Astrophys. J., Lett. 723, L127–L133 (2010).

    Article  ADS  Google Scholar 

  31. O. Steiner, U. Grossmann-Doerth, M. Schüssler, and M. Knölker, “Polarized radiation diagnostics of magnetohydrodynamic models of the solar atmosphere,” Sol. Phys. 164 (1–2), 223–242 (1996).

    Article  ADS  Google Scholar 

  32. J. O. Stenflo, “Magnetic-field structure of the photospheric network,” Sol. Phys. 32, 41–63 (1973).

    Article  ADS  Google Scholar 

  33. M. I. Stodilka and A. I. Prysiazhnyi, “Diagnostics of the solar atmosphere by the Non-LTE inversion method: Line of Ba II λ 455.403 nm,” Kinematics Phys. Celestial Bodies 32, 23–29 (2016).

    Article  ADS  Google Scholar 

  34. R. J. Rutten, “Extreme limb observations of Ba II λ 4554 and Mg I λ 4571,” Sol. Phys. 51, 3–24 (1977).

    Article  ADS  Google Scholar 

  35. R. J. Rutten, “Empirical NLTE analyses of solar spectral lines. II — The formation of the Ba II λ 4554 resonance line,” Sol. Phys. 56, 237–262 (1978).

    Article  ADS  Google Scholar 

  36. R. J. Rutten and R. W. Milkey, “Partial redistribution in the solar photospheric Ba II spectrum,” Astrophys. J. 231, 277–283 (1979).

    Article  ADS  Google Scholar 

  37. A. Voegler, S. Shelyag, M. Schussler, et al., “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code,” Astron. Astrophys. 429, 335–351 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Stodilka or R. I. Kostyk.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stodilka, M.I., Kostyk, R.I. Solar Faculae: Microturbulence as an Indicator of Inclined Magnetic Fields. Kinemat. Phys. Celest. Bodies 36, 153–160 (2020). https://doi.org/10.3103/S0884591320040054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320040054

Keywords:

Navigation