Skip to main content
Log in

Statistical Analysis of Infrasonic Parameters Generated by the Chelyabinsk Meteoroid

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The passage of the Chelyabinsk meteoroid generated a wide variety of physical effects in all subsystems in the Earth–atmosphere–ionosphere–magnetosphere system. Earlier studies have been conducted in order to examine the Chelyabinsk meteoroid’s effects in the atmosphere, ionosphere, and the geomagnetic field. Particular attention has been given to the features of the infrasound signal generated by the Chelyabinsk meteoroid. At the same time, the results of the statistical analysis of infrasonic parameters are absent in the literature. The purpose of this paper is to construct scatter diagrams for basic infrasonic parameters of the signal propagating globally (such as signal-to-noise ratios, time lags, celerity, time durations, amplitudes, and periods per cycle) depending on either the distance between the infrasound source and the sensor or the source back-azimuth as well as to fit respective regression lines. The data have been retrieved from 15 infrasound stations of the International Monitoring System (IMS) set up by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). On individual occasions, these data have been complemented by the data acquired by the infrasound stations located at the Eurasian geophysical observatories. Scatter diagrams have been constructed for basic parameters of the infrasonic signal propagating globally. The estimated regression lines superimposed on the scatter diagrams of these parameters versus distance or back-azimuth are shown. Estimates of the infrasound signal celerity (approximately 280 m/s) and tropospheric and stratospheric wind speed (approximately 30 m/s) averaged over all propagation paths have been determined. The advantages and disadvantages of the proposed regression lines are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. V. V. Alpatov, V. A. Burov, Yu. P. Vagin, et al., Geophysical Conditions at the Explosion of the Chelyabinsk (Chebarkulsky) Meteoroid in February 15,2013 (Inst. Prikl. Geofiz., Moscow, 2013) [in Russian].

  2. Asteroids and Comets. Chelyabinsk Event and the Study of Meteorite Falling into the Lake Chebarkul (Proc. Int. Sci.-Pract. Conf., Chebarkul, Russia, June 21–22, 2013) (Krai Ra, Chelyabinsk, 2013).

  3. Astron. Vestn. 47 (4) (2013).

  4. O. I. Berngardt, A. A. Dobrynina, G. A. Zherebtsov, A. V. Mikhalev, N. P. Perevalova, K. G. Ratovskii, R. A. Rakhmatulin, V. A. San’kov, and A. G. Sorokin, “Geophysical phenomena accompanying the Chelyabinsk meteoroid impact,” Dokl. Earth Sci. 452, 945–947 (2013). https://doi.org/10.1134/S1028334X13090080

    Article  ADS  Google Scholar 

  5. G. V. Givishvili, L. N. Leshchenko, V. V. Alpatov, S. A. Grigor’eva, S. V. Zhuravlev, V. D. Kuznetsov, O. A. Kusonskii, V. B. Lapshin, and M. V. Rybakov, “Ionospheric effects induced by the Chelyabinsk meteor,” Sol. Syst. Res. 47, 280–287 (2013).

    Article  ADS  Google Scholar 

  6. N. N. Gor’kavyi, D. S. Likharev, and D. N. Minnibaev, “The aerosol trace colour variations of the Chelyabinsk meteoroid,” in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All-Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 118–123.

  7. N. N. Gor’kavyi and T. A. Taidakova, “The interaction of the Chelyabinsk meteoroid with atmosphere,” in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All- Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 124–129.

  8. N. N. Gor’kavyi, T. A. Taidakova, E. A. Provornikova, I. N. Gor’kavyi, and M. M. Akhmetvaleev, “The aerosol plume of the Chelyabinsk meteoroid,” in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All- Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 130–135.

  9. M. B. Gokhberg, E. V. Ol’shanskaya, G. M. Steblov, and S. L. Shalimov, “The Chelyabinsk meteorite: Ionospheric response based on GPS measurements,” Dokl. Earth Sci. 452, 948–952 (2013).

    Article  ADS  Google Scholar 

  10. V. V. Emel’yanenko, O. P. Popova, N. N. Chugai, M. A. Shelyakov, Yu. V. Pakhomov, B. M. Shustov, V. V. Shuvalov, E. E. Biryukov, Yu. S. Rybnov, M. Ya. Marov, L. V. Rykhlova, S. A. Naroenkov, A. P. Kartashova, V. A. Kharlamov, and I. A. Trubetskaya, “Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013),” Sol. Syst. Res. 47, 240–254 (2013).

    Article  ADS  Google Scholar 

  11. O. V. Lazorenko and L. F. Chernogor, “System spectral analysis of infrasonic signal generated by Chelyabinsk meteoroid,” Radioelectron. Commun. Syst. 60, 331–338 (2017). https://doi.org/10.3103/S0735272717080015

    Article  Google Scholar 

  12. The Chelyabinsk Meteorite — One Year on the Earth (Proc. All- Russian Sci. Conf., Chelyabinsk, Feb. 14–15, 2014), Ed. by N. A. Antipin, (Kamennyi Poyas, Chelyabinsk, 2014).

    Google Scholar 

  13. N. P. Perevalova, N. V. Shestakov, A. S. Zhupityaeva, Yu. V. Yasyukevich, S. V. Voeikov, and K. A. Kutelev, “TEC variations in the ionosphere during the fall and explosion of the Chelyabinsk meteoroid,” in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All- Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 182–190.

  14. O. P. Popova, V. V. Shuvalov, Yu. S. Rybnov, V. A. Kharlamov, D. O. Glazachev, V. V. Emel’yanenko, A. P. Kartashova, and P. Dzhenniskens, “Chelyabinsk meteoroid parameters: Data analysis,” in Dynamic Processes in Geospheres: Compilation of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2013), Vol. 4, pp. 1–10 [in Russian].

    Google Scholar 

  15. Yu. S. Rybnov, O. P. Popova, V. A. Kharlamov, et al., “Energy estimation of Chelyabinsk bolide using infrasound measurements,” in Dynamic Processes in Geospheres: Compilation of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2013), Vol. 4, pp. 21–31 [in Russian].

    Google Scholar 

  16. A. G. Sorokin, “Infrasonic radiation of Chelyabinsk meteoroid,” Soln.-Zemnaya Fiz., No. 24, 58–63 (2013).

  17. L. F. Chernogor, “Large-scale disturbances in the Earth’s magnetic field associated with the Chelyabinsk meteorite event,” Radiofiz. Elektron. 4(18) (3), 47–54 (2013).

  18. L. F. Chernogor, “The main physical effects associated with the Chelyabinsk bolide passage,” in Asteroids and Comets. Chelyabinsk Event and the Study of Meteorite Falling into the Lake Chebarkul (Proc. Int. Sci.-Pract. Conf., Chebarkul, Russia, June 21–22,2013) (Krai Ra, Chelyabinsk, 2013), pp. 148–152.

  19. L. F. Chernogor, “Plasma, electromagnetic and acoustic effects of meteorite "Chelyabinsk”,” Inzh. Fiz., No. 8, 23–40 (2013).

  20. L. F. Chernogor, “Physical effects of the Chelyabinsk meteorite passage,” Dopov. Nats. Akad. Nauk Ukr., No. 10, 97–104 (2013).

  21. L. F. Chernogor, “Geomagnetic field effects of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 54, 613–624 (2014).

  22. L. F. Chernogor, “Main effects of Chelyabinsk meteorite falling: Physics and mathematics calculation results,” in The Chelyabinsk Meteorite — One Year on the Earth (Proc. All-Russian Sci. Conf., Chelyabinsk, Feb. 14–15,2014), Ed. by N. A. Antipin, et al. (Kamennyi Poyas, Chelyabinsk, 2014), pp. 229–264.

  23. L. F. Chernogor, “Ionospheric effects of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 55, 353–368 (2015).

  24. L. F. Chernogor, “Acoustic effects of the Chelyabinsk meteoroid,” Radiofiz. Radioastron. 22 (1), 53–66 (2017).

    Google Scholar 

  25. L. F. Chernogor, “Atmospheric effects of the gas–dust plume of the Chelyabinsk meteoroid of 2013,” Izv., Atm-os. Oceanic Phys. 53, 259–268 (2017).

    Article  ADS  Google Scholar 

  26. L. F. Chernogor, “Disturbance in the lower ionosphere that accompanied the reentry of the Chelyabinsk cosmic body,” Cosmic Res. 55, 323–332 (2017).

    Article  ADS  Google Scholar 

  27. L. F. Chernogor and V. V. Barabash, “Ionosphere disturbances accompanying the flight of the Chelyabinsk body,” Kinematics Phys. Celestial Bodies 30, 126–136 (2014).

    Article  ADS  Google Scholar 

  28. L. F. Chernogor and K. P. Garmash, “Disturbances in geospace associated with the Chelyabinsk meteorite passage,” Radiofiz. Radioastron. 18, 231–243 (2013).

    Google Scholar 

  29. L. F. Chernogor and A. I. Lyashchuk, “Parameters of infrasonic waves generated by the Chelyabinsk meteoroid on February 15, 2013,” Kinematics Phys. Celestial Bodies 33, 79–87 (2017).

    Article  ADS  Google Scholar 

  30. L. F. Chernogor, Yu. B. Milovanov, V. N. Fedorenko, and A. M. Tsymbal, “Satellite observations of ionospheric disturbances which followed the Chelyabinsk meteorite passage,” Kosm. Nauka Tekhnol. 19 (6), 38–46 (2013).

    Article  Google Scholar 

  31. L. F. Chernogor and N. B. Shevelev, “The parameters of infrasound effects generated by Chelyabinsk meteoroid 15 February, 2013,” Visn. Khark. Nats. Univ. im. V. N. Karazina, Ser.: Radiofiz. Elektron., No. 25, 70–73 (2016).

  32. L. F. Chernogor and N. B. Shevelev, “Characteristics of the infrasound signal generated by Chelyabinsk celestial body: Global statistics,” Radiofiz. Radioastron. 23, 24–35 (2018).

    Google Scholar 

  33. M. Antolik, G. Ichinose, J. Creasey, and D. Clauter, “Seismic and infrasonic analysis of the major bolide event of 15 February 2013,” Seismol. Res. Lett. 85, 334–343 (2014).

    Article  Google Scholar 

  34. M. I. Avramenko, I. V. Glazyrin, G. V. Ionov, and A. V. Karpeev, “Simulation of the airwave caused by the Chelyabinsk superbolide,” J. Geophys. Res.: Atmos. 119, 7035–7050 (2014).

    ADS  Google Scholar 

  35. L. F. Chernogor and V. T. Rozumenko, “The physical effects associated with Chelyabinsk meteorite’s passage,” Vopr. At. Nauki Tekh., No. 4 (86), 136–139 (2013).

  36. W. N. Edwards, P. G. Brown, and D. O. ReVelle, “Estimates of meteoroid kinetic energies from observations of infrasonic airwaves,” J. Atmos. Sol.-Terr. Phys. 68, 1136–1160 (2006).

    Article  ADS  Google Scholar 

  37. N. Gi, Using Bolide Airwaves to Estimate Meteoroid Source Characteristics and Window Damage Potential, Master of Science Thesis (Univ. of Western Ontario, London, Ontario, Canada, 2017).

  38. S. S. Grigoryan, F. S. Ibodov, and S. I. Ibadov, “Physical mechanism of Chelyabinsk superbolide explosion,” Sol. Syst. Res. 47, 268–274 (2013).

    Article  ADS  Google Scholar 

  39. A. Le Pichon, L. Ceranna, C. Pilger, et al., “Russian fireball largest ever detected by CTBTO infrasound sensors,” Geophys. Res. Lett. 40, 3732–3737 (2013).

    Article  ADS  Google Scholar 

  40. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G. Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Chelyabinsk airburst, damage assessment, meteorite, and characterization,” Science 342, 1069–1073 (2013).

    Article  ADS  Google Scholar 

  41. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Supplementary material for Chelyabinsk airburst, damage assessment, meteorite, and characterization” (2013). https://www.sciencemag.org/cgi/content/full/science.1242642/DC1.

  42. D. O. ReVelle, “Historical detection of atmospheric impacts by large bolides using acoustic gravity waves,” Ann. N. Y. Acad. Sci. 822, 284–302 (1997).

    Article  ADS  Google Scholar 

Download references

Funding

The study was funded as part of the state budget research activity of the institutions of the Ministry of Education and Science of Ukraine, state registration number 0119U002538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogor, L.F. Statistical Analysis of Infrasonic Parameters Generated by the Chelyabinsk Meteoroid. Kinemat. Phys. Celest. Bodies 36, 171–185 (2020). https://doi.org/10.3103/S0884591320040029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320040029

Keywords:

Navigation