Skip to main content
Log in

Variations in the Plasma Parameters of the Earth’s Magnetotail during Substorm Initiation

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

A chain of events accompanying the occurrence of a substorm in the Earth’s ionosphere and magnetosphere is considered. Features of geomagnetic pulsations and mechanisms of their generation are indicated. Measurements of magnetic field fluctuations from fluxgate magnetometers, as well as the data on temperature, velocity, and concentration of electrons, and different types of ions from the PEACE and CIS-CODIF experiments of the Cluster-2 space mission, have been analyzed. It was found that a significant increase in temperature, velocity fluctuations, and concentration is observed during the initiation of a substorm that was accompanied by dipolarization (sharp change in the magnetic field configuration from the elongated tail-like force lines to a more dipole structure). A time delay in the heating of protons and oxygen ions, as well as in the concentration variations, was detected. The comparison of wave characteristics for different pressures was carried out using wavelet analysis. The magnetic field pressure, as well as dynamic and thermal pressure for different types of particles, was considered. Pc5 and strong Pc4 pulsations, as well as direct and inverse cascades, were observed in the fluctuations of the magnetic field pressure and thermal pressure of electrons and protons. The results point to a significant role of kinetic effects in the complex chain of processes in the Earth’s magnetosphere during the explosive phase of a substorm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S.-I. Akasofu, Polar and Magnetospheric Substorms (Springer-Verlag, Dordrecht, 1968; Mir, Moscow, 1971).

  2. Space Geoheliophysics, Ed. by L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008), Vol. 1 [in Russian].

    Google Scholar 

  3. A. Nishida, Geomagnetic Diagnosis of the Magnetosphere (Springer-Verlag, New York, 1977; Mir, Moscow, 1980).

  4. J. Birn, “Magnetotail dynamics: Survey of recent progress,” in The Dynamic Magnetosphere, Ed. by W. Liu and M. Fujimoto (Springer-Verlag, Dordrecht, 2011), in Ser.: IAGA Special Sopron Book Series, Vol. 3, pp. 49–63.

  5. J. Birn, M. Hesse, and K. Schindler, “Formation of thin current sheets in space plasmas,” J. Geophys. Res.: Space Phys. 103, 6843–6852 (1998).

    Article  ADS  Google Scholar 

  6. M. N. Caan, R. L. McPherron, and C. T. Russell, “The statistical magnetic signatures of magnetospheric substorms,” Planet. Space Sci. 26, 269–279 (1978).

    Article  ADS  Google Scholar 

  7. D. H. Fairfield, T. Mukai, M. Brittnacher, et al., “Earthward flow bursts in the inner magnetosphere and their relation to auroral brightenings, AKR intensifications, geosynchronous particle injections and magnetic activity,” J. Geophys. Res.: Space Phys. 104, 355–370 (1999).

    Article  ADS  Google Scholar 

  8. L. A. Frank, W. R. Paterson, J. B. Sigwarth, and S. Kokubun, “Observations of magnetic field dipolarization during auroral substorm onset,” J. Geophys. Res.: Space Phys. 105, 15897–15912 (2000).

    Article  ADS  Google Scholar 

  9. Handbook of the Solar-Terrestrial Environment, Ed. by Y. Kamide and A. Chian (Springer-Verlag, Berlin, 2007).

    Google Scholar 

  10. S. Jevrejeva, J. C. Moore, and A. Grinsted, “Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach,” J. Geophys. Res.: Atmos. 108, 4677–4708 (2003).

    Article  ADS  Google Scholar 

  11. A. D. Johnstone, C. Alsop, S. Burge, P. J. Carter, A. J. Coates, A. J. Coker, et al., “PEACE: A plasma electron and current experiment,” Space Sci. Rev. 79, 351–398 (1997).

    Article  ADS  Google Scholar 

  12. L. V. Kozak, A. T. Y. Lui, E. A. Kronberg, and A. S. Prokhorenkov, “Turbulent processes in Earth’s magnetosheath by Cluster mission measurements,” J. Atmos. Sol.-Terr. Phys. 154, 115–126 (2017).

    Article  ADS  Google Scholar 

  13. L. V. Kozak, B. A. Petrenko, A. T. Y. Lui, E. A. Kronberg, E. E. Grigorenko, and A. S. Prokhorenkov, “Turbulent processes in the Earth’s magnetotail: Spectral and statistical research,” Ann. Geophys. 36, 1303–1318 (2018).

    Article  ADS  Google Scholar 

  14. R. E. Lopez, “Magnetospheric substorms,” Johns Hopkins APL Tech. Dig. 11, 264–271 (1990).

    ADS  Google Scholar 

  15. A. T. Y. Lui, “Extended consideration of a synthesis model for magnetospheric substorm,” in Magnetospheric Substorms, Ed. by J. Kan, et al. (AGU, Washington, DC, 1991), in Ser.: Geophysical Monograph, Vol. 64, pp. 43–60.

  16. A. T. Y. Lui, “Current disruption in the Earth’s magnetosphere: Observations and models,” J. Geophys. Res.: Space Phys. 101, 13067–13088 (1996).

    Article  ADS  Google Scholar 

  17. A. T. Y. Lui, “Multiscale phenomena in the near-Earth magnetosphere,” J. Atmos. Sol.-Terr. Phys. 64, 125–143 (2002).

    Article  ADS  Google Scholar 

  18. A. T. Y. Lui, “Potential plasma instabilities for substorm expansion onsets,” Space Sci. Rev. 113, 127–206 (2004).

    Article  ADS  Google Scholar 

  19. R. McPherron, “Substorm related changes in the geomagnetic tail: The growth phase,” Planet. Space Sci. 20, 1521–1539 (1972).

    Article  ADS  Google Scholar 

  20. M. I. Pudovkin, V. S. Semenov, G. V. Starkov, and T. A. Kornilova, “On separation of the potential and vortex parts of the magnetotail electric field,” Planet. Space Sci. 39, 563–568 (1991).

    Article  ADS  Google Scholar 

  21. I. J. Rae, I. R. Mann, V. Angelopoulos, K. R. Murphy, D. K. Milling, A. Kale, H. U. Frey, G. Rostoker, C. T. Russell, C. E. J. Watt, M. J. Engebretson, M. B. Moldwin, S. B. Mende, H. J. Singer, and E. F. Donovan, “Near-Earth initiation of a terrestrial substorm,” J. Geophys. Res.: Space Phys. 114, 2156–2202 (2009).

    Google Scholar 

  22. H. Reme, C. Aoustin, J. M. Bosqued, I. Dandouras, B. Lavraud, J. A. Sauvaud, et al., “First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical cluster ion spectrometry (CIS) experiment,” Ann. Geophys. 19, 1303–1354 (2001).

    Article  ADS  Google Scholar 

  23. J. C. Samson, B. G. Harrold, J. M. Ruohoniemi, R. A. Greenwald, and A. D. M. Walker, “Field line resonances associated with MHD waveguides in the magnetosphere,” Geophys. Res. Lett. 19, 441–456 (1992).

    Article  ADS  Google Scholar 

  24. T. Sarris and X. Li, “Evolution of the dispersionless injection boundary associated with substorms,” Ann. Geophys. 23, 877–884 (2005).

    Article  ADS  Google Scholar 

  25. V. A. Sergeev, D. G. Mitchell, C. T. Russell, and D. J. Williams, “Structure of the tail plasma/current sheet at ∼11 RE and its changes in the course of a substorm,” J. Geophys. Res.: Space Phys. 98, 17345–17365 (1993).

    Article  ADS  Google Scholar 

  26. M. A. Shukhtina, N. P. Dmitrieva, N. G. Popova, et al., “Observational evidence of the loading-unloading substorm scheme,” Geophys. Res. Lett. 32, L17107 (2005). https://doi.org/10.1029/2005GL023779

    Article  ADS  Google Scholar 

  27. C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Article  ADS  Google Scholar 

  28. A. G. Yahnin, I. V. Despirak, A. A. Lubchich, et al., “Indirect mapping of the source of the oppositely directed fast plasma flows in the plasma sheet onto the auroral display,” Ann. Geophys. 24, 679–687 (2006).

    Article  ADS  Google Scholar 

  29. R. Yamaguchi, H. Kawano, S. Ohtani, et al., “Total pressure variations in the magnetotail as a function of the position and the substorm magnitude,” J. Geophys. Res.: Space Phys. 109, A03206 (2004). https://doi.org/10.1029/2003JA010196

    Article  ADS  Google Scholar 

Download references

Funding

The study was carried out as part of joint research projects by the scientists of Taras Shevchenko National University of Kyiv and the National Academy of Sciences of Ukraine for 2019–2020 and was funded by grant no. 90312 of the Volkswagen Foundation (VW-Stiftung) and the International Space Research Institute ISSI-BJ, Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. V. Kozak, B. A. Petrenko, E. A. Kronberg, E. E. Grigorenko, P. M. Kozak or K. D. Reka.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozak, L.V., Petrenko, B.A., Kronberg, E.A. et al. Variations in the Plasma Parameters of the Earth’s Magnetotail during Substorm Initiation. Kinemat. Phys. Celest. Bodies 36, 94–102 (2020). https://doi.org/10.3103/S0884591320020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320020051

Keywords:

Navigation