Skip to main content
Log in

Reconstruction of Action Potentials of Cardiac Cells from Extracellular Field Potentials

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The key areas of application of systems with microelectrode arrays (MEA) are studying the mechanisms of diseases and testing the effect of drugs on the human body using “laboratory-on-a-chip” technologies based on researches of artificially grown cells. Many scientists’ efforts are directed to the processing and analysis of information received by MEA systems, helping the doctors in creating effective treatment strategies. However, field potentials (FP) of cardiac cells recorded with MEA systems in non-invasive measurements provide incomplete information for the estimation of ionic currents, compared to invasive measurements of action potentials (AP) obtained using patch-clamp technology. The research is devoted to the mathematical determination of the relationship between the signals of electrical activity of cardiomyocytes: internal AP and external FP. In this paper it is proposed a method for solving the inverse problem of the relationship between AP and FP. The equation for the transfer functions between AP and FP is obtained on the basis of field theory. The paper presents the results of AP reconstruction modeling using measured FPs, demonstrating the change in the morphology and parameters of these signals under the influence of dimethylsulfoxide (DMSO). FP signals are recorded using non-destructive electrophysiological technology based on microelectrode coaxial guides (μECG), which can be considered as a type of MEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. P. Garg, V. Garg, R. Shrestha, M. C. Sanguinetti, T. J. Kamp, J. C. Wu, "Human induced pluripotent stem cell–derived cardiomyocytes as models for cardiac channelopathies," Circ. Res., v.123, n.2, p.224 (2018). DOI: https://doi.org/10.1161/CIRCRESAHA.118.311209.

    Article  Google Scholar 

  2. N. Azizipour, R. Avazpour, D. H. Rosenzweig, M. Sawan, A. Ajji, "Evolution of biochip technology: A review from lab-on-a-chip to organ-on-a-chip," Micromachines, v.11, n.6, p.599 (2020). DOI: https://doi.org/10.3390/mi11060599.

    Article  Google Scholar 

  3. J. Piñero, L. I. Furlong, F. Sanz, "In silico models in drug development: where we are," Curr. Opin. Pharmacol., v.42, p.111 (2018). DOI: https://doi.org/10.1016/j.coph.2018.08.007.

    Article  Google Scholar 

  4. H.-J. Huang, Y.-H. Lee, Y.-H. Hsu, C.-T. Liao, Y.-F. Lin, H.-W. Chiu, "Current strategies in assessment of nanotoxicity: alternatives to in vivo animal testing," Int. J. Mol. Sci., v.22, n.8, p.4216 (2021). DOI: https://doi.org/10.3390/ijms22084216.

    Article  Google Scholar 

  5. L. D. Garma, L. Matino, G. Melle, F. Moia, F. De Angelis, F. Santoro, M. Dipalo, "Cost-effective and multifunctional acquisition system for in vitro electrophysiological investigations with multi-electrode arrays," PLOS ONE, v.14, n.3, p.e0214017 (2019). DOI: https://doi.org/10.1371/journal.pone.0214017.

    Article  Google Scholar 

  6. L. G. J. Tertoolen, S. R. Braam, B. J. van Meer, R. Passier, C. L. Mummery, "Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes," Biochem. Biophys. Res. Commun., v.497, n.4, p.1135 (2018). DOI: https://doi.org/10.1016/j.bbrc.2017.01.151.

    Article  Google Scholar 

  7. M. Talkhabi, N. Aghdami, H. Baharvand, "Human cardiomyocyte generation from pluripotent stem cells: A state-of-art," Life Sci., v.145, p.98 (2016). DOI: https://doi.org/10.1016/j.lfs.2015.12.023.

    Article  Google Scholar 

  8. P. Mulder, T. de Korte, E. Dragicevic, U. Kraushaar, R. Printemps, M. L. H. Vlaming, S. R. Braam, J.-P. Valentin, "Predicting cardiac safety using human induced pluripotent stem cell-derived cardiomyocytes combined with multi-electrode array (MEA) technology: A conference report," J. Pharmacol. Toxicol. Methods, v.91, p.36 (2018). DOI: https://doi.org/10.1016/j.vascn.2018.01.003.

    Article  Google Scholar 

  9. J. Ma, L. Guo, S. J. Fiene, B. D. Anson, J. A. Thomson, T. J. Kamp, K. L. Kolaja, B. J. Swanson, C. T. January, "High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents," Am. J. Physiol. Circ. Physiol., v.301, n.5, p.H2006 (2011). DOI: https://doi.org/10.1152/ajpheart.00694.2011.

    Article  Google Scholar 

  10. A. S. T. Smith, J. Macadangdang, W. Leung, M. A. Laflamme, D.-H. Kim, "Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening," Biotechnol. Adv., v.35, n.1, p.77 (2017). DOI: https://doi.org/10.1016/j.biotechadv.2016.12.002.

    Article  Google Scholar 

  11. P. W. Burridge, G. Keller, J. D. Gold, J. C. Wu, "Production of De Novo Cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming," Cell Stem Cell, v.10, n.1, p.16 (2012). DOI: https://doi.org/10.1016/j.stem.2011.12.013.

    Article  Google Scholar 

  12. S. Casini, A. O. Verkerk, C. A. Remme, "Human iPSC-derived cardiomyocytes for investigation of disease mechanisms and therapeutic strategies in inherited arrhythmia syndromes: Strengths and limitations," Cardiovasc. Drugs Ther., v.31, n.3, p.325 (2017). DOI: https://doi.org/10.1007/s10557-017-6735-0.

    Article  Google Scholar 

  13. L. A. Annecchino, S. R. Schultz, "Progress in automating patch clamp cellular physiology," Brain Neurosci. Adv., v.2, p.239821281877656 (2018). DOI: https://doi.org/10.1177/2398212818776561.

    Article  Google Scholar 

  14. S. A. Mann, J. Heide, T. Knott, R. Airini, F. B. Epureanu, A.-F. Deftu, A.-T. Deftu, B. M. Radu, B. Amuzescu, "Recording of multiple ion current components and action potentials in human induced pluripotent stem cell-derived cardiomyocytes via automated patch-clamp," J. Pharmacol. Toxicol. Methods, v.100, p.106599 (2019). DOI: https://doi.org/10.1016/j.vascn.2019.106599.

    Article  Google Scholar 

  15. T. J. Herron, P. Lee, J. Jalife, "Optical imaging of voltage and calcium in cardiac cells & tissues," Circ. Res., v.110, n.4, p.609 (2012). DOI: https://doi.org/10.1161/CIRCRESAHA.111.247494.

    Article  Google Scholar 

  16. M. C. Müllenbroich, A. Kelly, C. Acker, G. Bub, T. Bruegmann, A. Di Bona, E. Entcheva, C. Ferrantini, P. Kohl, S. E. Lehnart, M. Mongillo, C. Parmeggiani, C. Richter, P. Sasse, T. Zaglia, L. Sacconi, G. L. Smith, "Novel optics-based approaches for cardiac electrophysiology: A review," Front. Physiol., v.12 (2021). DOI: https://doi.org/10.3389/fphys.2021.769586.

    Article  Google Scholar 

  17. E. Tanumihardja, D. S. de Bruijn, R. H. Slaats, W. Olthuis, A. van den Berg, "Monitoring contractile cardiomyocytes via impedance using multipurpose thin film ruthenium oxide electrodes," Sensors, v.21, n.4, p.1433 (2021). DOI: https://doi.org/10.3390/s21041433.

    Article  Google Scholar 

  18. M. F. Peters, C. W. Scott, R. Ochalski, Y. P. Dragan, "Evaluation of cellular impedance measures of cardiomyocyte cultures for drug screening applications," ASSAY Drug Dev. Technol., v.10, n.6, p.525 (2012). DOI: https://doi.org/10.1089/adt.2011.442.

    Article  Google Scholar 

  19. M. F. Peters, S. D. Lamore, L. Guo, C. W. Scott, K. L. Kolaja, "Human stem cell-derived cardiomyocytes in cellular impedance assays: Bringing cardiotoxicity screening to the front line," Cardiovasc. Toxicol., v.15, n.2, p.127 (2015). DOI: https://doi.org/10.1007/s12012-014-9268-9.

    Article  Google Scholar 

  20. B. Koci, G. Luerman, A. Duenbostell, R. Kettenhofen, H. Bohlen, L. Coyle, B. Knight, W. Ku, W. Volberg, J. R. Woska, M. P. Brown, "An impedance-based approach using human iPSC-derived cardiomyocytes significantly improves in vitro prediction of in vivo cardiotox liabilities," Toxicol. Appl. Pharmacol., v.329, p.121 (2017). DOI: https://doi.org/10.1016/j.taap.2017.05.023.

    Article  Google Scholar 

  21. C. W. Scott, X. Zhang, N. Abi-Gerges, S. D. Lamore, Y. A. Abassi, M. F. Peters, "An impedance-based cellular assay using human iPSC-derived cardiomyocytes to quantify modulators of cardiac contractility," Toxicol. Sci., v.142, n.2, p.331 (2014). DOI: https://doi.org/10.1093/toxsci/kfu186.

    Article  Google Scholar 

  22. G. Melle, G. Bruno, N. Maccaferri, G. Iachetta, N. Colistra, A. Barbaglia, M. Dipalo, F. De Angelis, "Intracellular recording of human cardiac action potentials on market-available multielectrode array platforms," Front. Bioeng. Biotechnol., v.8 (2020). DOI: https://doi.org/10.3389/fbioe.2020.00066.

    Article  Google Scholar 

  23. M. Dipalo, G. Melle, L. Lovato, A. Jacassi, F. Santoro, V. Caprettini, A. Schirato, A. Alabastri, D. Garoli, G. Bruno, F. Tantussi, F. De Angelis, "Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays," Nat. Nanotechnol., v.13, n.10, p.965 (2018). DOI: https://doi.org/10.1038/s41565-018-0222-z.

    Article  Google Scholar 

  24. G. C. Messina, M. Dipalo, R. La Rocca, P. Zilio, V. Caprettini, R. Proietti Zaccaria, A. Toma, F. Tantussi, L. Berdondini, F. De Angelis, "Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes," Adv. Mater., v.27, n.44, p.7145 (2015). DOI: https://doi.org/10.1002/adma.201503252.

    Article  Google Scholar 

  25. S. R. Braam, L. Tertoolen, A. van de Stolpe, T. Meyer, R. Passier, C. L. Mummery, "Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes," Stem Cell Res., v.4, n.2, p.107 (2010). DOI: https://doi.org/10.1016/j.scr.2009.11.004.

    Article  Google Scholar 

  26. S. Nachimuthu, M. D. Assar, J. M. Schussler, "Drug-induced QT interval prolongation: mechanisms and clinical management," Ther. Adv. Drug Saf., v.3, n.5, p.241 (2012). DOI: https://doi.org/10.1177/2042098612454283.

    Article  Google Scholar 

  27. F. Stillitano, J. Hansen, C.-W. Kong, I. Karakikes, C. Funck-Brentano, L. Geng, S. Scott, S. Reynier, M. Wu, Y. Valogne, C. Desseaux, J.-E. Salem, D. Jeziorowska, N. Zahr, R. Li, R. Iyengar, R. J. Hajjar, J.-S. Hulot, "Modeling susceptibility to drug-induced long QT with a panel of subject-specific induced pluripotent stem cells," eLife, v.6 (2017). DOI: https://doi.org/10.7554/eLife.19406.

    Article  Google Scholar 

  28. N. G. Ivanushkina, K. O. Ivanko, M. O. Shpotak, Y. V. Prokopenko, "Solving the inverse problem of relationship between action potentials and field potentials in cardiac cells," Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, n.85, p.53 (2021). DOI: https://doi.org/10.20535/RADAP.2021.85.53-59.

    Article  Google Scholar 

  29. R. Visone, G. S. Ugolini, D. Cruz-Moreira, S. Marzorati, S. Piazza, E. Pesenti, A. Redaelli, M. Moretti, P. Occhetta, M. Rasponi, "Micro-electrode channel guide (µECG) technology: an online method for continuous electrical recording in a human beating heart-on-chip," Biofabrication, v.13, n.3, p.035026 (2021). DOI: https://doi.org/10.1088/1758-5090/abe4c4.

    Article  Google Scholar 

  30. A. O. Verkerk, M. M. G. J. van Borren, R. J. G. Peters, E. Broekhuis, K. Y. Lam, R. Coronel, J. M. T. de Bakker, H. L. Tan, R. Wilders, "Single cells isolated from human sinoatrial node: Action potentials and numerical reconstruction of pacemaker current," in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2007). DOI: https://doi.org/10.1109/IEMBS.2007.4352437.

    Chapter  Google Scholar 

  31. C. Rickert, C. Proenza, "ParamAP: Standardized parameterization of sinoatrial node myocyte action potentials," Biophys. J., v.113, n.4, p.765 (2017). DOI: https://doi.org/10.1016/j.bpj.2017.07.001.

    Article  Google Scholar 

  32. M. Verheijen, M. Lienhard, Y. Schrooders, O. Clayton, R. Nudischer, S. Boerno, B. Timmermann, N. Selevsek, R. Schlapbach, H. Gmuender, S. Gotta, J. Geraedts, R. Herwig, J. Kleinjans, F. Caiment, "DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro," Sci. Reports, v.9, n.1, p.4641 (2019). DOI: https://doi.org/10.1038/s41598-019-40660-0.

    Article  Google Scholar 

  33. X. Zhang, L. Guo, H. Zeng, S. L. White, M. Furniss, B. Balasubramanian, E. Lis, A. Lagrutta, F. Sannajust, L. L. Zhao, B. Xi, X. Wang, M. Davis, Y. A. Abassi, "Multi-parametric assessment of cardiomyocyte excitation-contraction coupling using impedance and field potential recording: A tool for cardiac safety assessment," J. Pharmacol. Toxicol. Methods, v.81, p.201 (2016). DOI: https://doi.org/10.1016/j.vascn.2016.06.004.

    Article  Google Scholar 

  34. H. Ando, T. Yoshinaga, W. Yamamoto, K. Asakura, T. Uda, T. Taniguchi, A. Ojima, R. Shinkyo, K. Kikuchi, T. Osada, S. Hayashi, C. Kasai, N. Miyamoto, H. Tashibu, D. Yamazaki, A. Sugiyama, Y. Kanda, K. Sawada, Y. Sekino, "A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes," J. Pharmacol. Toxicol. Methods, v.84, p.111 (2017). DOI: https://doi.org/10.1016/j.vascn.2016.12.003.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the employees of the Milan Polytechnic A. Redaelli and R. Visone for providing recordings of extracellular field potentials, which were registered using μECG technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliia G. Ivanushkina.

Ethics declarations

ADDITIONAL INFORMATION

N. G. Ivanushkina, K. O. Ivanko, M. O. Shpotak, Yu. V. Prokopenko

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347022090047 with DOI: https://doi.org/10.20535/S0021347022090047

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 7, pp. 420-432, July, 2022 https://doi.org/10.20535/S0021347022090047 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanushkina, N.G., Ivanko, K.O., Shpotak, M.O. et al. Reconstruction of Action Potentials of Cardiac Cells from Extracellular Field Potentials. Radioelectron.Commun.Syst. 65, 354–364 (2022). https://doi.org/10.3103/S0735272722090047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272722090047

Navigation