Skip to main content
Log in

Simulation of Raman Amplifier Using TrueWave RS Active Fiber with Uniform Bandwidth in C+L Telecommunication Windows

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The paper presents the simulation results of a broadband fiber Raman amplifier with uniform gain band covering C+L telecommunication windows in the standard TrueWave RS fiber. Main advantages of the fiber amplifier with active medium based on the single-mode TrueWave RS type fiber were analyzed by comparing this amplifier with the erbium doped fiber amplifier. A simplified model for the analytical description of the ultrawideband fiber Raman amplifier with multiwave pumping has been proposed. In this study, the problem of simulating the uniform bandwidth of working frequencies of fiber Raman amplifier in (C+L)-band telecommunication windows is solved in two stages: first, we obtain an almost exact analytical approximation of the Raman gain profile in the frequency region of Stokes shift above 20 THz that at the second stage significantly simplifies the gain band equalization in configuration with multiple pumping wavelengths. It has been shown that the gain ripple can be dramatically reduced from more than 3 to 0.2 dB by increasing the number of pumping sources M from M = 2 to M = 6, however, further increase of M has almost no effect on the improvement of gain band irregularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. L. Galdino, M. Tan, A. Alvarado, D. Lavery, P. Rosa, R. Maher, J. D. Ania-Castanon, P. Harper, S. Makovejs, B. C. Thomsen, P. Bayvel, "Amplification schemes and multi-channel DBP for unrepeatered transmission," J. Light. Technol., v.34, n.9, p.2221 (2016). DOI: https://doi.org/10.1109/JLT.2016.2521002.

    Article  Google Scholar 

  2. P. A. Andrekson, M. Karlsson, "Fiber-based phase-sensitive optical amplifiers and their applications," Adv. Opt. Photonics, v.12, n.2, p.367 (2020). DOI: https://doi.org/10.1364/AOP.382548.

    Article  Google Scholar 

  3. H. Takara, T. Mizuno, H. Kawakami, Y. Miyamoto, H. Masuda, K. Kitamura, H. Ono, S. Asakawa, Y. Amma, K. Hirakawa, S. Matsuo, K. Tsujikawa, M. Yamada, "120.7-Tb/s MCF-ROPA unrepeatered transmission of PDM-32QAM channels over 204 km," J. Light. Technol., v.33, n.7, p.1473 (2015). DOI: https://doi.org/10.1109/JLT.2015.2397009.

    Article  Google Scholar 

  4. T. Mizuno, H. Takara, K. Shibahara, A. Sano, Y. Miyamoto, "Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems," J. Light. Technol., v.34, n.6, p.1484 (2016). DOI: https://doi.org/10.1109/JLT.2016.2524546.

    Article  Google Scholar 

  5. H. Ono, M. Yamada, H. Masuda, "Pump power reduction in optical fiber amplifier for WDM-interleaved multi-core/multi-fiber system," IEEE Photonics Technol. Lett., v.29, n.14, p.1163 (2017). DOI: https://doi.org/10.1109/LPT.2017.2707470.

    Article  Google Scholar 

  6. I. Syuaib, M. Asvial, E. T. Rahardjo, "Modeling of ultra-long span bidirectional Raman transmission link using three-segment hybrid fiber core structure," Photonics, v.6, n.1, p.2 (2018). DOI: https://doi.org/10.3390/photonics6010002.

    Article  Google Scholar 

  7. D. Bayart, "Optical amplification," in Undersea Fiber Communication Systems (Elsevier, 2016). DOI: https://doi.org/10.1016/B978-0-12-804269-4.00004-0.

    Chapter  Google Scholar 

  8. P. A. Korotkov, G. S. Felinskyi, "Forced-Raman-scattering-based amplification of light in one-mode quartz fibers," Ukr. J. Physics. Rev., v.5, n.2, p.103 (2009). URI: http://archive.ujp.bitp.kiev.ua/files/reviews/5/2/r05_02_01pu.pdf.

    Google Scholar 

  9. V. I. Grygoruk, I. V. Serdeha, G. S. Felinskyi, P. A. Korotkov, "Fiber Raman lasers and amplifiers of optical radiation," in Interaction of Physical Fields with Nanostructured Materials (Karavella, Kyiv, 2018).

    Google Scholar 

  10. S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, N. Peyghambarian, "Review of recent progress on single-frequency fiber lasers," J. Opt. Soc. Am. B, v.34, n.3, p.A49 (2017). DOI: https://doi.org/10.1364/JOSAB.34.000A49.

    Article  Google Scholar 

  11. D. J. Richardson, J. Nilsson, W. A. Clarkson, "High power fiber lasers: current status and future perspectives [Invited]," J. Opt. Soc. Am. B, v.27, n.11, p.B63 (2010). DOI: https://doi.org/10.1364/JOSAB.27.000B63.

    Article  Google Scholar 

  12. M. N. Zervas, C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron., v.20, n.5, p.219 (2014). DOI: https://doi.org/10.1109/JSTQE.2014.2321279.

    Article  Google Scholar 

  13. E. M. Dianov, A. M. Prokhorov, "Medium-power CW Raman fiber lasers," IEEE J. Sel. Top. Quantum Electron., v.6, n.6, p.1022 (2000). DOI: https://doi.org/10.1109/2944.902151.

    Article  Google Scholar 

  14. V. Grygoruk, P. Korotkov, G. S. Felinskyi, Nonlinear and Laser Processes in Optical Fibers (Kyiv University, Kyiv, 2008).

    Google Scholar 

  15. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, N. Peyghambarian, "Fiber lasers and their applications [Invited]," Appl. Opt., v.53, n.28, p.6554 (2014). DOI: https://doi.org/10.1364/AO.53.006554.

    Article  Google Scholar 

  16. P. A. Korotkov, G. S. Felinskyi, "Fiber Raman CW lasers," Ukr. J. Phys. Rev., v.3, n.2, p.126 (2006).

    Google Scholar 

  17. P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, Z. Liu, "High-power fiber lasers based on tandem pumping," J. Opt. Soc. Am. B, v.34, n.3, p.A29 (2017). DOI: https://doi.org/10.1364/JOSAB.34.000A29.

    Article  Google Scholar 

  18. B. J. Puttnam, R. S. Luís, G. Rademacher, Y. Awaji, H. Furukawa, "319 Tb/s Transmission over 3001 km with S, C and L band signals over >120nm bandwidth in 125 μm wide 4-core fiber," in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, San Francisco, 2021). URI: https://ieeexplore.ieee.org/document/9489785.

    Google Scholar 

  19. "2021OFS. TrueWave®RS Optical Fiber," Newsl. OFS Mark. Commun. URI: https://fiber-optic-catalog.ofsoptics.com/documents/pdf/TrueWaveRSLWP-120-web.pdf.

  20. J. Bromage, K. Rottwitt, M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles," IEEE Photonics Technol. Lett., v.14, n.1, p.24 (2002). DOI: https://doi.org/10.1109/68.974149.

    Article  Google Scholar 

  21. G. Felinskyi, V. Grygoruk, I. Serdeha, "Modelling of gain profiles and Raman lasing in TiO2/GeO2-doped silica fibres," Ukr. J. Phys. Opt., v.21, n.1, p.15 (2020). DOI: https://doi.org/10.3116/16091833/21/1/15/2020.

    Article  Google Scholar 

  22. L. Lundberg, P. A. Andrekson, M. Karlsson, "Power consumption analysis of hybrid EDFA/Raman amplifiers in long-haul transmission systems," J. Light. Technol., v.35, n.11, p.2132 (2017). DOI: https://doi.org/10.1109/JLT.2017.2668768.

    Article  Google Scholar 

  23. Y. V. Krutin, A. V. Korchak, M. I. Reznikov, G. S. Felinskyi, "Modeling of multiwave pumped fiber Raman amplifier for C+L telecommunication windows," in 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2020). DOI: https://doi.org/10.1109/ELNANO50318.2020.9088755.

    Chapter  Google Scholar 

  24. R. H. Stolen, W. J. Tomlinson, H. A. Haus, J. P. Gordon, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B, v.6, n.6, p.1159 (1989). DOI: https://doi.org/10.1364/JOSAB.6.001159.

    Article  Google Scholar 

  25. D. Hollenbeck, C. D. Cantrell, "Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function," J. Opt. Soc. Am. B, v.19, n.12, p.2886 (2002). DOI: https://doi.org/10.1364/JOSAB.19.002886.

    Article  Google Scholar 

  26. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photonics Technol. Lett., v.11, n.5, p.530 (1999). DOI: https://doi.org/10.1109/68.759388.

    Article  Google Scholar 

  27. M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, X. Li, "Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photonics Technol. Lett., v.13, n.9, p.948 (2001). DOI: https://doi.org/10.1109/68.942656.

    Article  Google Scholar 

  28. P. Xiao, Q. Zeng, J. Huang, J. Liu, "A new optimal algorithm for multipump sources of distributed fiber Raman amplifier," IEEE Photonics Technol. Lett., v.15, n.2, p.206 (2003). DOI: https://doi.org/10.1109/LPT.2002.806086.

    Article  Google Scholar 

  29. G. E. Walrafen, P. N. Krishnan, "Model analysis of the Raman spectrum from fused silica optical fibers," Appl. Opt., v.21, n.3, p.359 (1982). DOI: https://doi.org/10.1364/AO.21.000359.

    Article  Google Scholar 

  30. I. V. Serdeha, V. I. Grygoruk, G. S. Felinskyi, "Spectroscopic features of Raman gain profiles in single-mode fibers based on silica glass," Ukr. J. Phys., v.63, n.8, p.683 (2018). DOI: https://doi.org/10.15407/ujpe63.8.683.

    Article  Google Scholar 

  31. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev., v.127, n.6, p.1918 (1962). DOI: https://doi.org/10.1103/PhysRev.127.1918.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr V. Korchak.

Ethics declarations

ADDITIONAL INFORMATION

Ya. V. Krutin, O. V. Korchak, M. I. Reznikov, and G. S. Felinskyi

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021120013 with DOI: https://doi.org/10.20535/S0021347021120013

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 12, pp. 715-730, December, 2021 https://doi.org/10.20535/S0021347021120013 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutin, Y.V., Korchak, O.V., Reznikov, M.I. et al. Simulation of Raman Amplifier Using TrueWave RS Active Fiber with Uniform Bandwidth in C+L Telecommunication Windows. Radioelectron.Commun.Syst. 64, 619–632 (2021). https://doi.org/10.3103/S0735272721120013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721120013

Navigation