Skip to main content
Log in

The Result of Successive Exposure to Reverse and Forward Bias on the Electrophysical Characteristics of ZnO:Al/i-ZnO/CdS/CuIn1 – xGax(S, Se)2/Mo Structure Solar Cells

  • SOLAR MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The article presents the results of studies on the effect of forward bias on the parameters of solar cells with the ZnO:Al/i-ZnO/CdS/CuIn1 – xGax(S,Se)2/Mo structure, which were previously subjected to reverse bias for 600 s. The results of studies of the current–voltage (IV) characteristics of copper, indium, gallium, and selenide (CIGS) solar cells (SCs), before and after exposure to forward bias, indicate a difference in the effect of forward bias from exposure to long-term illumination, in which there is a restoration of parameters that have changed during reverse bias. Although the effect of forward bias is in some sense considered identical to the operation of a SC under illumination, when exposed to forward bias, further deterioration of the electrophysical parameters of the SC is observed, which can be interpreted on the basis of the charge state rearrangement model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., and Ho-Baillie, A.W.Y., Solar cell efficiency tables (version 54), Prog. Photovoltaics Res. Appl., 2019, vol. 27, pp. 565–575. https://doi.org/10.1002/pip.3171

    Article  Google Scholar 

  2. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., and Sugimoto, H., Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%, IEEE J. Photovoltaics, 2019, vol. 9, pp. 1863–1867. https://doi.org/10.1109/JPHOTOV.2019.2937218

    Article  Google Scholar 

  3. Komilov, A.G., Influence of CdS buffer layer thickness on the photovoltaic parameters of solar cells, Appl. Sol. Energy, 2018, vol. 54, pp. 308–309. https://doi.org/10.3103/S0003701X18050092

    Article  Google Scholar 

  4. Wolden, C.A., Kurtin, J., Baxter, J.B., Repins, I., Shaheen, S.E., Torvik, J.T., Rockett, A.A., Fthenakis, V.M., and Aydil, E.S., Photovoltaic manufacturing: Present status, future prospects, and research needs, J. Vac. Sci. Technol. A, 2011, vol. 29, p. 030801. https://doi.org/10.1116/1.3569757

    Article  Google Scholar 

  5. Osterwald, C.R. and McMahon, T.J., History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review, Prog. Photovoltaics Res. Appl., 2009, vol. 17, pp. 11–33. https://doi.org/10.1002/pip.861

    Article  Google Scholar 

  6. Dongaonkar, S., Alam, M.A., Karthik, Y., Mahapatra, S., Wang, D., and Frei, M., Identification, characterization, and implications of shadow degradation in thin film solar cells, 2011 Int. Reliability Phys. Symp., IEEE, 2011, pp. 5E.4.1–5E.4.5. https://doi.org/10.1109/IRPS.2011.5784535

  7. Westin, M.E.P.-O., Zimmermann, U., and Stolt, L., Reverse bias damage in CIGS modules, 24th Eur. Photovoltaic Sol. Energy Conf., Hamburg, Germany, 2009, pp. 2967–2970. https://doi.org/10.4229/24thEUPVSEC2009-3BV.5.34

  8. Silverman, T.J., Deceglie, M.G., Sun, X., Garris, R.L., Alam, M.A., Deline, C., and Kurtz, S., Thermal and electrical effects of partial shade in monolithic thin-film photovoltaic modules, IEEE J. Photovoltaics, 2015, vol. 5, pp. 1742–1747. https://doi.org/10.1109/JPHOTOV.2015.2478071

    Article  Google Scholar 

  9. Ramabadran, R. and Mathur, B., Effect of shading on series and parallel connected solar PV modules, Mod. Appl. Sci., 2009, vol. 3. https://doi.org/10.5539/mas.v3n10p32

  10. Nardone, M., Dahal, S., and Waddle, J.M., Shading-induced failure in thin-film photovoltaic modules: Electrothermal simulation with nonuniformities, Sol. Energy., 2016, vol. 139, pp. 381–388. https://doi.org/10.1016/j.solener.2016.10.006

    Article  Google Scholar 

  11. Palmiotti, E., Johnston, S., Gerber, A., Guthrey, H., Rockett, A., Mansfield, L., Silverman, T.J., and Al-Jassim, M., Identification and analysis of partial shading breakdown sites in CuInxGa(1 – x)Se2 modules, Sol. Energy, 2018, vol. 161, pp. 1–5. https://doi.org/10.1016/j.solener.2017.12.019

    Article  Google Scholar 

  12. Ruberto, M.N. and Rothwarf, A., Time-dependent open-circuit voltage in CuInSe2/CdS solar cells: Theory and experiment, J. Appl. Phys., 1987, vol. 61, pp. 4662–4669. https://doi.org/10.1063/1.338377

    Article  Google Scholar 

  13. Zabierowski, P., Rau, U., and Igalson, M., Classification of metastabilities in the electrical characteristics of ZnO/CdS/Cu(In,Ga)Se2 solar cells, Thin Solid Films, 2001, vol. 387, pp. 147–150. https://doi.org/10.1016/S0040-6090(00)01850-2

    Article  Google Scholar 

  14. Meyer, T., Schmidt, M., Engelhardt, F., Parisi, J., and Rau, U., A model for the open circuit voltage relaxation in Cu(In,Ga)Se2 heterojunction solar cells, Eur. Phys. J. Appl. Phys., 1999, vol. 8, pp. 43–52. https://doi.org/10.1051/epjap:1999228

    Article  Google Scholar 

  15. Lang, D.V. and Logan, R.A., Large-lattice-relaxation model for persistent photoconductivity in compound semiconductors, Phys. Rev. Lett., 1977, vol. 39, pp. 635–639. https://doi.org/10.1103/PhysRevLett.39.635

    Article  Google Scholar 

  16. Igalson, M., Zabierowski, P., Prządo, D., Urbaniak, A., Edoff, M., and Shafarman, W.N., Understanding defect-related issues limiting efficiency of CIGS solar cells, Sol. Energy Mater. Sol. Cells., 2009, vol. 93, pp. 1290–1295. https://doi.org/10.1016/j.solmat.2009.01.022

    Article  Google Scholar 

  17. Siebentritt, S., Igalson, M., Persson, C., and Lany, S., The electronic structure of chalcopyrites-bands, point defects and grain boundaries, Prog. Photovoltaics Res. Appl., 2010, vol. 18, pp. 390–410. https://doi.org/10.1002/pip.936

    Article  Google Scholar 

  18. Igalson, M., Metastable defect distributions in CIGS solar cells and their impact on device efficiency, MRS Proc. 1012, 2007, p. 1012-Y04-01. https://doi.org/10.1557/PROC-1012-Y04-01

  19. Jensen, S.A., Kanevce, A., Mansfield, L.M., Glynn, S., Lany, S., and Kuciauskas, D., Optically induced metastability in Cu(In,Ga)Se2, Sci. Rep., 2017, vol. 7, p. 13788. https://doi.org/10.1038/s41598-017-14344-6

    Article  Google Scholar 

  20. Paul, P.K., Jarmar, T., Stolt, L., Rockett, A., and Arehart, A.R., Role of EV+0.98 eV trap in light soaking-induced short circuit current instability in CIGS solar cells, 2018. http://arxiv.org/abs/1806.06665.

  21. Lany, S. and Zunger, A., Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex, J. Appl. Phys., 2006, vol. 100, p. 113725. https://doi.org/10.1063/1.2388256

    Article  Google Scholar 

  22. Komilov, A., Effect of light absorption on electrophysical characteristics of solar cells with ZnO:Al/i-ZnO/CdS/CuIn1 – xGax(S,Se)2/Mo structure, Innovatsionnye Tekhnol., 2020, vol. 4, pp. 16–20.

    Google Scholar 

  23. Komilov, A.G., Influence of reverse bias on the parameters of solar cells based on CIGS, Uzb. Fiz. Zh., 2020, vol. 22, pp. 227–236.

    Google Scholar 

  24. Scheer, R. and Schock, H.-W., Chalcogenide Photovoltaics Physics, Technologies, and Thin Film Devices, Germany: Wiley-VCH Verlag, 2011.

    Book  Google Scholar 

  25. Sze, S.M. and Ng, K.K., Physics of Semiconductor Devices, Hoboken, NJ: John Wiley & Sons, 2006. https://doi.org/10.1002/0470068329

    Book  Google Scholar 

  26. Green, M.A., Solar cells—Operating principles, technology and system applications, 1982. https://doi.org/10.1016/0038-092X(82)90265-1

Download references

ACKNOWLEDGMENTS

The study was carried out within the theme of the laboratory Solar Thermal and Power Installations of the Physical–Technical Institute, Academy of Sciences of the Republic of Uzbekistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Komilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komilov, A.G., Egamberdiev, B.E., Kabulov, R. et al. The Result of Successive Exposure to Reverse and Forward Bias on the Electrophysical Characteristics of ZnO:Al/i-ZnO/CdS/CuIn1 – xGax(S, Se)2/Mo Structure Solar Cells. Appl. Sol. Energy 58, 476–481 (2022). https://doi.org/10.3103/S0003701X22040090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X22040090

Keywords:

Navigation