Skip to main content
Log in

Performance of parabolic through solar power plant under weather conditions of the Oujda city in Morocco

  • Solar Energy Concentrators
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

A numerical simulation of Concentrating Solar Power (CSP) plant based on an Organic Rankine Cycle (ORC) power generation unit integrated with parabolic trough collectors is carried out. For the study we refer to the Solar Electric Generating System VI (SEGS VI), installed in the Mojave desert-California (USA), whose solar field which is constituted by LS2 parabolic trough collectors and we consider the same plant implementation in the region of Oujda city (Morocco). To predict the energy performance, the simulations are carried out using TRNSYS 16 simulation program known for its modularity and flexibility and the external library known as the Solar Thermal Electric Components (STEC) library. The meteorological parameters including Direct Normal Irradiation (DNI), ambient temperature and other weather conditions are taken from meteorological year database provided by a high precision MHP station located in Mohamed Premier University. The obtained results show that the region of East offers great potential in general for implementing this type of plant. In fact, the value of 30 MWe is reached during the strongest sunshine day and the operating time can go from 7 AM until 19 PM for a summer day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Touafek, K., Haddadi, M., and Malek, A., Experimental study on a new hybrid photovoltaic thermal collector, Appl. Solar Energy, 2009, vol. 45, no. 3, pp. 181–186.

    Article  Google Scholar 

  2. Isakov, A.Zh. and Bugakov, A.G., Photovoltaic power plants and related power engineering service, Appl. Solar Energy, 2014, vol. 50, no. 3, pp. 188–190.

    Article  Google Scholar 

  3. Zakhidov, R.A. and Anarbaev, A.I., Application of solar heat sources at thermal electric power plants, Appl. Solar Energy, 2010, vol. 46, no. 1, pp. 66–70.

    Article  Google Scholar 

  4. Klychev, Sh.I., Zakhidov, R.A., Bakhramov, S.A., et al., Concentrations of the linear Fresnel reflector with the facets orientated to the immovable receive, Appl. Solar Energy, 2010, vol. 46, no. 3, pp. 224–227

    Article  Google Scholar 

  5. Klychev, Sh.I., Abdurakhmanov, A.A., and Kuchkarov, A.A., Optical-geometric parameters of a linear Fresnel mirror with flat facets, Appl. Solar Energy, 2014, vol. 50, no. 3, pp. 168–170.

    Article  Google Scholar 

  6. Kuchkarov, A.A., Sobirov, Yu.B., Kulakhmedov, N.N., et al., Adjustment of facets of flat and focusing heliostats, concentrators, and Fresnel mirror concentrating systems, Appl. Solar Energy, 2015, vol. 51, no. 2, pp. 151–155.

    Article  Google Scholar 

  7. Zheng, H., Yu, X., Su, Y., et al., Thermodynamic analysis of an idealized solar tower thermal power plant, Appl. Therm. Eng., 2015, vol. 81, pp. 271–278.

    Article  Google Scholar 

  8. Rodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J., et al., Thermal design guidelines of solar power towers, Appl. Therm. Eng., 2014, no. 63, pp. 428–438.

    Article  Google Scholar 

  9. Ahmadi, M.H., Ahmadi, M.A., Mellit, A., et al., Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation, Electr. Power Energy Syst., 2016, no. 78, pp. 88–95.

    Article  Google Scholar 

  10. Arora, R., Kaushik, S.C., Kumar, R., and Arora, R., Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making, Electr. Power Energy Syst., 2016, no. 74, pp. 25–35.

    Article  Google Scholar 

  11. Fernandez-García, A., Zarza, E., Valenzuela, L., and Pérez, M., Parabolic-trough solar collectors and their applications, Renew. Sust. Energy Rev., 2010, vol. 14, no. 7, pp. 1695–1721.

    Article  Google Scholar 

  12. Kruger, D. and Pandian, Y., Parabolic trough collector testing in the frame of the REACt project, Desalination, 2008, vol. 220, no. 1–3, pp. 612–618.

    Article  Google Scholar 

  13. Kalogirou, S., Use of parabolic trough solar energy collectors for sea-water desalination, Appl. Energy, 1998, vol. 60, pp. 65–88.

    Article  Google Scholar 

  14. Collins, T. and Parker, S.A., Parabolic-trough solar water heating, renewable technology for reducing water-heating costs, Federal Technology Alert. Tech. Rep., Washington, no. DOE/GO-102000-0973.

  15. Hepbasli, A. and Alsuhaibani, Z., A key review on present status and future directions of solar energy studies and applications in Saudi Arabia, Renew. Sust. Energy Rev., 2011, vol. 15, no. 9, pp. 5021–5050.

    Article  Google Scholar 

  16. Weiss, W., Bergmann, I., and Faninger, G., Solar heat worldwide markets and contribution to the energy supply 2006, in IEA, Gleisdorf: AEE INTEC.

  17. Ismatkhodgaev, S.K., Matchanov, N.A., Azizov, Sh.A., and Suleymanov, Sh.I., Advanced technologies of development of power engineering and energy supply of the republic economy, Appl. Solar Energy, 2014, vol. 50, no. 3, pp. 191–195.

    Article  Google Scholar 

  18. Saettone, E., Desalination using a parabolic trough concentrator, Appl. Solar Energy, 2012, vol. 48, no. 4, pp. 254–259.

    Article  Google Scholar 

  19. Oshchepkov, M.Yu., Frid, S.E., and Kolobaev, M.A., Stratification in a solar tank accumulator during rapid displacement of hot water, Appl. Solar Energy, 2015, vol. 51, no. 3, pp. 177–182.

    Article  Google Scholar 

  20. Lippke, F., Simulation of the Part-Load Behavior of a 30 MWe SEGS Plant, Albuquerque, NM: Sandia National Lab., 1995, no. SAND95-1293.

    Book  Google Scholar 

  21. Jones, S., Pitz-Paal, R., Schwarzboezl, P., et al., TRNSYS modeling of the SEGS VI parabolic trough solar electric generating system, Proc. ASME Int. Solar Energy Conf. Solar Forum, Washington, 2001.

    Google Scholar 

  22. Patnode, A.M., Simulation and performance evaluation of parabolic trough solar power plants, M.S. Thesis, Madison: The Univ. Wisconsin-Madiso, 2006.

    Google Scholar 

  23. Kolb, G.J., Evaluation of annual performance of 2-tank and thermocline thermal storage systems for trough plants, J. Solar Energy Eng., 2011, vol. 133, no. 3, pp. 031023–031023-5.

    Article  Google Scholar 

  24. Stuetzle, T., Automatic control of the 30 MWe SEGS VI parabolic trough plant, Master Thesis, Univ. of Wisconsin–Madison, College of Engineering, 2002.

    Google Scholar 

  25. Badran, O. and Eck, M., The application of parabolic trough technology under Jordanian climate, Renew. Energy, 2006, vol. 31, pp. 791–802.

    Article  Google Scholar 

  26. Price, H., A parabolic trough solar power plant simulation model, Proc. Int. Solar Energy Conf. ISES 2003, Göteborg, March 16–18, 2003.

    Google Scholar 

  27. Rheinlander, J., Bergmann, S., and Erbes, M.R., Technical and economic performance of parabolic trough solar power plants–a computational tool for plant feasibility studies, Proc. 14th Int. Symp. on Solar PACES2008, Las Vegas, 2008.

    Google Scholar 

  28. Daniel, P., Joshi, Y., and Das, A., Numerical investigation of parabolic trough receiver performance with outer vacuum shell, Solar Energy, 2011, no. 85, pp. 1910–1914.

    Article  Google Scholar 

  29. Llorente Garcia, I., Ãlvarez, J.L., and Blanco, D., Performance model for parabolic trough solar thermal power plants with thermal storage: comparison to operating plant data, Solar Energy, 2011, vol. 85, no. 10, pp. 2443–2460.

    Article  Google Scholar 

  30. Powell, K.M. and Edgar, T.F., Modeling and control of a solar thermal power plant with thermal energy storage, Chem. Eng. Sci., 2012, vol. 71, pp.138–145.

    Article  Google Scholar 

  31. Xu, L., Wang, Z., Li, X., et al., Dynamic test model for the transient thermal performance of parabolic trough solar collectors, Solar Energy, 2013, vol. 95, pp. 65–78.

    Article  Google Scholar 

  32. Bakos, G.C. and Parsa, D., Techno-economic assessment of an integrated solar combined cycle power plant in Greece using line-focus parabolic trough collectors, Renew. Energy, 2013, vol. 60, pp. 598–603.

    Article  Google Scholar 

  33. Milton, M.R., Naum, F., and Chigueru, T., Analytic modeling of a solar power plant with parabolic linear collectors, Solar Energy, 2009, vol. 83, pp. 126–133.

    Article  Google Scholar 

  34. Venkataramaiah, P., Mohana Reddy, P., and Sairam, P., Simulation and optimization on a solar parabolic collector: an experimental investigation, Int. J. Sust. Energy, 2013, vol. 33, no. 4, pp. 869–882.

    Article  Google Scholar 

  35. Kuravi, S., Trahan, J., Goswami, D.Y., et al., Thermal energy storage technologies and systems for concentrating solar power plants, Progress Energy Combust. Sci., 2013, vol. 39, pp. 285–319.

    Article  Google Scholar 

  36. Herrmann, U. and Kearney, D.W., Survey of thermal energy storage for parabolic trough power plants, J. Solar Energy Eng., 2002, vol. 124, no. 2, pp. 145–152.

    Article  Google Scholar 

  37. Guechchati, R., Moussaoui, M.A., and Mezrhab, A., Reducing energy consumption of habitat located in eastern region of Morocco, Appl. Solar Energy, 2012, vol. 48, no. 1, pp. 33–37.

    Article  Google Scholar 

  38. Anarbaev, A. and Zakhidov, R., Method to simulate and optimize the operating conditions of a solar-fuel heat supply system, Appl. Solar Energy, 2011, vol. 47, no. 3, pp. 252–257.

    Article  Google Scholar 

  39. Essabbani, T., Moufekkir, F., Mezrhab, A., and Naji, H., Numerical computation of thermal performance of a simulation of a solar domestic hot water system, Appl. Solar Energy, 2015, vol. 51, no. 1, pp. 22–33.

    Article  Google Scholar 

  40. TRNSYS, Madison: The Univ. of Wisconsin-Madison Solar Energy Lab., 2007, vol. 2.

  41. Schwarzbözl, P., A TRNSYS Model Library for Solar Thermal Electric Components (STEC). Reference Manual Release 3.0, Köln, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mezrhab.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Lahoussine Ouali, H., Guechchati, R., Moussaoui, M.A. et al. Performance of parabolic through solar power plant under weather conditions of the Oujda city in Morocco. Appl. Sol. Energy 53, 45–52 (2017). https://doi.org/10.3103/S0003701X17010121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X17010121

Navigation