Skip to main content
Log in

Electron flux spatial distribution in an ultrashort avalanche electron beam generated at atmospheric air pressure

  • Electron Discharge in Dense Gases
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The results of experimental study on generation of ultrashort avalanche electron beams (UAEB) in gas-filled diodes are considered. The spatial distribution of the flux of runaway electrons and X-rays generated in the gas diode fed by nanosecond high-voltage pulses was studied. It was shown that the UAEB in the gas-filled diode (at an air pressure of 1 atm) with sharply nonuniform electric field is generated from the interelectrode region into a solid angle exceeding 2π sr. Narrowing of the cathode-anode gap results in a decrease in the current amplitude of the beam generated to side walls of the gas diode and an increase in the beam current pulse duration in both axial and radial directions. Current pulses of the beam initiated from the side surface of the tubular cathode were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Alekseev, V. P. Gubanov, V. M. Orlovskii, V. S. Skakun, and V. F. Tarasenko, “A New Method of Producing Subnanosecond High-Current Electron Beams,” Dokl.-Phys. 49(10) 549 (2004).

    Article  ADS  Google Scholar 

  2. V. F. Tarasenko and S. I. Yakovlenko, “High-Power Subnanosecond Beams of Runaway Electrons and Volume Discharge Formation in Gases at Atmospheric Pressure,” Plasma Dev. Operat. 13(4), 231 (2005).

    Article  Google Scholar 

  3. V. F. Tarasenko, V. G. Shpak, S. A. Shunailov, and I. D. Kostyrya, “Supershort Electron Beam from Air-Filled Diode at Atmospheric Pressure,” Laser Part. Beams. 23(4), 545 (2005).

    Article  ADS  Google Scholar 

  4. G. A. Mesyats, S. D. Korovin, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, and M. A. Yalandin, “Dynamics of Subnanosecond Electron Beam Formation in Gas-Filled and Vacuum Diodes,” Tech. Phys. Lett. 32(1), 18 (2006).

    Article  Google Scholar 

  5. V. F. Tarasenko, S. I. Yakovlenko, S. A. Shunailov, I. D. Kostyrya, and A. N. Tkachev, “On the Mechanism of Subnanosecond Electron Beam Formation in Gas-Filled Diodes,” Laser Phys. 16(3), 526 (2006).

    Article  Google Scholar 

  6. H. G. Krompholz, L. L. Hatfield, A. A. Neuber, K. P. Kohl, J. E. Chaporro, and H.-Y. Ryu, “Phenomenology of Subnanosecond Gas Discharge at Pressure Below One Atmosphere,” IEEE Trans. Plasma Sci. 34(3), 927 (2006).

    Article  ADS  Google Scholar 

  7. E. Kh. Baksht, V. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, “High-Current-Density Subnanosecond Electron Beams Formed in a Gas-Filled Diode at Low Pressures,” Tech. Phys. Lett. 32(11), 948 (2006).

    Article  ADS  Google Scholar 

  8. I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko, “Volume X-Ray Emission in Gas Diodes at Atmospheric Pressure,” Tech. Phys. Lett. 33(4), 309 (2007).

    Article  ADS  Google Scholar 

  9. V. B. Bratchikov, K. A. Gagarinov, I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko, “X-Ray Radiation from the Volume Discharge in Atmospheric-Pressure Air,” Tech. Phys. 52(7), 856 (2007).

    Article  Google Scholar 

  10. I. D. Kostyrya and V. F. Tarasenko, “X-Ray Emission from a Low-Current Volume Discharge in Air at Atmospheric Pressure,” Tech. Phys. Lett. 33(5), 424 (2007).

    Article  ADS  Google Scholar 

  11. E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, “Discharge Current and Ultrashort Avalanche Electron Beam Current in a Volume Nanosecond Gas Discharge in Inhomogeneous Electric Field,” Tech. Phys. Lett. 33(3), 216 (2007).

    Article  ADS  Google Scholar 

  12. M. I. Lomaev, G. A. Mesyats, V. D. Rybka, V. F. Tarasenko, and E. Kh. Baksht, “High-Power Short-Pulse Xenon Dimer Spontaneous Radiation Source,” Quantum Electron. 37(6), 595 (2007).

    Article  Google Scholar 

  13. E. Kh. Baksht, V. F. Tarasenko, M. I. Lomaev, and D. V. Rybka, “Ultrashort Electron Beams Generated on the Flat Part of a Voltage Pulse in Nitrogen and Helium,” Tech. Phys. Lett. 33(5), 373 (2007).

    Article  ADS  Google Scholar 

  14. M. V. Erofeev, I. D. Kostyrya, and V. F. Tarasenko, “Pulsed Discharge in Nitrogen and Argon under an Elevated Pressure in a Nonuniform Electric Field,” Tech. Phys. 52(10), 1291 (2007).

    Article  Google Scholar 

  15. E. Kh. Baksht, E. V. Balzovskii, A. I. Klimov, I. K. Kurkan, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, “Collector Assembly for Measuring a Subnanosecond-Duration Electron Beam Current,” Instrum. Exp. Tech. 50(6), 811 (2007).

    Article  Google Scholar 

  16. A. G. Rep’ev and P. B. Repin, “Spatiotemporal Parameters of the X-Ray Radiation from a Diffuse Atmospheric-Pressure Discharge,” Tech. Phys. 53(1), 73 (2008).

    Google Scholar 

  17. V. F. Tarasenko, D. V. Rybka, E. Kh. Baksht, I. D. Kostyrya, and M. I. Lomaev, “Generation and Measurement of Subnanosecond Electron Beams in Gas-Filled Diodes,” Instrum. Exp. Tech. 51(2), 213 (2008).

    Google Scholar 

  18. E. Kh. Baksht, A. G. Burachenko, M. V. Erofeev, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, “On the Effect of Transverse Magnetic Field on Generation of Electron Beam in Gas Diode.” Tech. Phys. 53(6) (2008) [in print].

  19. I. D. Kostyrya, M. I. Lomaev, V. F. Tarasenko, D. V. Rybka, and E. Kh. Baksht, “On the Spatial Distribution of Electron Flux during Ultrashort Avalanche Electron Beam Generation in Gas Diode,” Izv. Tomsk. Politekhn. Univ. 312(2), 131 (2008) [in Russian].

    Google Scholar 

  20. E. Kh. Baksht, M. V. Erofeev, M. I. Lomaev, D. V. Rybka, D. A. Sorokin, and V. F. Tarasenko, “Generation of Ultrashort Avalanche Electron Beams in Sulfur Hexafluoride,” Izv. Tomsk. Politekhn. Univ. 312(2), 136 (2008) [in Russian].

    Google Scholar 

  21. M. I. Yalandin and V. G. Shpak, “Compact High-Power Subnanosecond Repetitive-Pulse Generators (Review),” Instrum. Exp. Tech. 44(3), 285 (2001).

    Article  Google Scholar 

  22. N. A. Dyuzhev and Yu. I. Tishin, “Molybdenum and Silicon Technologies of Planar Emission Screens. What is More Promising?” Elektronika: Nauka, Tekhnologiia, Biznes. N 1, 50 (2001) [in Russian].

  23. Yu. D. Korolev and G. A. Mesyats, Field-Emission and Explosive Processes in Gas Discharge (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  24. G. A. Mesyats, Ectons in Vacuum Discharge: Breakdown, Spark, Arc (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  25. A. V. Gurevich and K. P. Zybin, “Runaway Breakdown and Electric Discharges in Thunderstorms,” Phys.-Usp. 44(11), 1119 (2001).

    Article  Google Scholar 

  26. L. P. Babich, “Polarization-Induced Self-Acceleration of Electrons,” Sov. J. Plasma Phys. 8, 404 (1982).

    Google Scholar 

  27. G. A. Askaryan, “On the New Possibilities of Particle Acceleration to High Energies,” Proc. Lebedev Phys. Inst. 66, 66 (1973) [in Russian].

    Google Scholar 

  28. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, “Fast Ionisation Waves under Electrical Breakdown Conditions,” Phys.-Usp. 37(3), 247 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

About this article

Cite this article

Baksht, E.K., Kostyrya, I.D., Lomaev, M.I. et al. Electron flux spatial distribution in an ultrashort avalanche electron beam generated at atmospheric air pressure. Phys. Wave Phen. 16, 199–206 (2008). https://doi.org/10.3103/S1541308X08030059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X08030059

PACS numbers

Navigation