Skip to main content
Log in

Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation

  • Research Article
  • Published:
Central European Journal of Geosciences

Abstract

The majority of the Mio-Pleistocene monogenetic volcanoes in Western Hungary had, at least in their initial eruptive phase, phreatomagmatic eruptions that produced pyroclastic deposits rich in volcanic glass shards. Electron microprobe studies on fresh samples of volcanic glass from the pyroclastic deposits revealed a primarily tephritic composition. A shape analysis of the volcanic glass shards indicated that the fine-ash fractions of the phreatomagmatic material fragmented in a brittle fashion. In general, the glass shards are blocky in shape, low in vesicularity, and have a low-to-moderate microlite content. The glass-shape analysis was supplemented by fractal dimension calculations of the glassy pyroclasts. The fractal dimensions of the glass shards range from 1.06802 to 1.50088, with an average value of 1.237072876, based on fractal dimension tests of 157 individual glass shards. The average and mean fractal-dimension values are similar to the theoretical Koch-flake (snowflake) value of 1.262, suggesting that the majority of the glass shards are bulky with complex boundaries. Light-microscopy and backscattered-electron-microscopy images confirm that the glass shards are typically bulky with fractured and complex particle outlines and low vesicularity; features that are observed in glass shards generated in either a laboratory setting or naturally through the interaction of hot melt and external water. Textural features identified in fine- and coarse-ash particles suggest that they were formed by brittle fragmentation both at the hot melt-water interface (forming active particles) as well as in the vicinity of the interaction interface. Brittle fragmentation may have occurred when hot melt rapidly penetrated abundant water-rich zones causing the melt to cool rapidly and rupture explosively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heiken G.H., Wohletz K.H., Volcanic Ash, University of California Press, Berkeley, 1986

    Google Scholar 

  2. Zimanowski B., Wohletz K., Dellino P., Buttner R., The volcanic ash problem, J. Volcanol. Geoth. Res., 2003, 122, 1–5

    Article  Google Scholar 

  3. Buttner R., Dellino P., La Volpe L., Lorenz V., Zimanowski B., Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments, J. Geophys. Res.-Sol. Ea., 2002, 107, 2277

    Article  Google Scholar 

  4. Buttner R., Dellino P., Zimanowski B., Identifying magma-water interaction from the surface features of ash particles, Nature, 1999, 401, 688–690

    Article  Google Scholar 

  5. Morrissey M.M., Zimanowski B., Wohletz K., Büttner R., Phreatomagmatic fragmentation. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J., (Eds), Encyclopedia of Volcanoes, Academic Press, New York, 2000, 431–446

    Google Scholar 

  6. Zimanowski B., Buttner R., Lorenz V., Hafele H.G., Fragmentation of basaltic melt in the course of explosive volcanism, J. Geophys. Res.-Sol. Ea., 1997, 102, 803–814

    Article  Google Scholar 

  7. Frohlich G., Zimanowski B., Lorenz V., Explosive thermal interactions between molten lava and water, Exp. Therm. Fluid Sci., 1993, 7, 319–332

    Article  Google Scholar 

  8. Buttner R., Dellino P., Raue H., Sonder I., Zimanowski B., Stress-induced brittle fragmentation of magmatic melts: Theory and experiments, J. Geophys. Res.-Sol. Ea., 2006, 111

  9. Dellino P., LaVolpe L., Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian islands, Italy), J. Volcanol. Geoth. Res., 1996, 71, 13–29

    Article  Google Scholar 

  10. Heiken G.H., Wohletz K., Fragmentation processes in explosive volcanic eruptions. In: Fisher R.V., Smith G.A. (Eds.), Sedimentation in Volcanic Settings, Society for Sedimentary Geology, 1991, 19–26

  11. Wohletz K.H., Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies, B. Volcanol., 1986, 48, 245–264

    Article  Google Scholar 

  12. Wohletz K.H., McQueen R.G., Experimental studies in hydromagmatic volcanism. In: Studies in Geophysics: Explosive volcanism: Inception, evolution and haz-ards, National Academy Press, Washington, 1984, 158–169

    Google Scholar 

  13. Wohletz K.H., Mechanisms of hydrovolcanic pyroclast formation - Grain-size, scanning electron-microscopy, and experimental studies, J. Volcanol. Geoth. Res., 1983, 17, 31–63

    Article  Google Scholar 

  14. Dellino P., Kyriakopoulos K., Phreatomagmatic ash from the ongoing eruption of Etna reaching the Greek island of Cefalonia, J. Volcanol. Geoth. Res., 2003, 126, 341–345

    Article  Google Scholar 

  15. Dellino P., Liotino G., The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance, J. Volcanol. Geoth. Res., 2002, 113, 1–18

    Article  Google Scholar 

  16. Dellino P., Isaia R., La Volpe L., Orsi G., Statistical analysis of textural data from complex pyroclastic sequences: implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegraean Fields, southern Italy, B. Volcanol., 2001, 63, 443–461

    Google Scholar 

  17. Dellino P., La Volpe L., Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano (Aeolian Islands, Italy), J. Volcanol. Geoth. Res., 2000, 96, 57–78

    Article  Google Scholar 

  18. Dellino P., Phreatomagmatic deposits: fragmentation, transportation and deposition mechanisms, Terra Nostra, 2000, 6, 99–105

    Google Scholar 

  19. Lautze N.C., Houghton, B.F., Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy, B. Volcanol., 2007, 69, 445–460

    Article  Google Scholar 

  20. Sable J.E., Houghton B.F., Del Carlo P., Coltelli M., Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: Karoly Németh Evidence from clast microtextures, J. Volcanol. Geoth. Res., 2006, 158, 333–354

    Article  Google Scholar 

  21. Németh K., Monogenetic volcanic fields;their origin, sedimentary record, relationship with polygenetic volcanism, and how monogenetic they are. In: Canon-Tapia E., Szakacs A. (Eds.) What is a volcano? Geological Society of America, 2010 (in press)

  22. Kienle J., Kyle P.R., Self S., Motyka R.J., Lorenz V., Ukinrek Maars, Alaska.1. April 1977 Eruption Sequence, Petrology And Tectonic Setting, J. Volcanol. Geoth. Res., 1980, 7, 11–37

    Article  Google Scholar 

  23. Németh K., Cronin S.J., Charley D., Harrison M., Garae E., Exploding lakes in Vanuatu -“Surtseyan-style” eruptions witnessed on Ambae Island, Episodes, 2006, 29, 87–92

    Google Scholar 

  24. Maria A., Carey S., Using fractal analysis to quantitatively characterize the shapes of volcanic particles, J. Geophys. Res.-Sol. Ea., 2002, 107, 2283

    Article  Google Scholar 

  25. Carey R.J., Houghton B.F., Sable J.E., Wilson C.J.N., Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption, B. Volcanolo., 2007, 69, 903–926

    Article  Google Scholar 

  26. Carey S., Maria A., Sigurdsson H., Use offractal analysis for discrimination of particles from primary and reworked jokulhlaup deposits in SE Iceland, J. Volcanol. Geoth. Res., 2000, 104, 65–80

    Article  Google Scholar 

  27. Wada K., Fractal structure of heterogeneous ejecta from the Me-Akan Volcano, Eastern Hokkaido, Japan- Implications for mixing mechanism in a volcanic conduit, J. Volcanol. Geoth. Res., 1995, 66, 69–79

    Article  Google Scholar 

  28. Shea T., Houghton B.F., Gurioli L., Cashman K.V., Hammer J.E., Hobden B.J., Textural studies of vesicles in volcanic rocks: An integrated methodology, J. Volcanol. Geoth. Res., 2010, (in press)

  29. Dellino P., Lavolpe L., Fragmentation Versus Transportation Mechanisms in the Pyroclastic Sequence of Monte-Pilato Rocche-Rosse (Lipari, Italy), J. Volcanol. Geoth. Res. 1995, 64, 211–231

    Article  Google Scholar 

  30. Wohletz K., Krinsley D.H., Scanning electron microscopy of basaltic hydromagmatic ash, Scan. Electron Micros., 1978, 1-16

  31. Ersoy O., Aydar E., Gourgaud A., Bayhan H., Quantitative analysis on volcanic ash surfaces: Application of extended depth-of-field (focus) algorithm for light and scanning electron microscopy and 3D reconstruction, Micron, 2008, 39, 128–136

    Article  Google Scholar 

  32. Ersoy O., Gourgaud A., Aydar E., Chinga G., Thouret J.C., Quantitative scanning-electron microscope analysis of volcanic ash surfaces: Application to the 1982–1983 Galunggung eruption (Indonesia), Geol. Soc. Am. Bull., 2007, 119, 743–752

    Article  Google Scholar 

  33. Mangan M.T., Cashman K.V., The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains, J. Volcanol. Geoth.. Res., 1996, 73, 1–18

    Article  Google Scholar 

  34. Mangan M.T., Cashman K.V., Newman, S., Vesiculation of basaltic magma during eruption, Geology, 1993, 21, 157–160

    Article  Google Scholar 

  35. Allen S.R., Bryner V.F., Smith, I.E.M., Ballance, P.F., Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand, New Zeal. J. Geol. Geoph., 1996, 39, 309–327

    Article  Google Scholar 

  36. Von Veh M.W., Nemeth K., An assessment of the alignments of vents on geostatistical analysis in the Auckland Volcanic Field, New Zealand, Geomorphologie, 2009, 175-186

  37. Lorenz V., Kurszlaukis S., Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes, J. Volcanol. Geoth. Res., 2007, 159, 4–32

    Article  Google Scholar 

  38. Lorenz V., Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments, Geolines, 2003, 15, 72–83

    Google Scholar 

  39. Németh K., Budai T., Diatremes cut through the Triassic carbonate platforms in the Dolomites? Evidences from and around the Latemar, northern Italy, Episodes, 2009, 32, 74–83

    Google Scholar 

  40. Németh K., Martin U., Haller M.J., Alric V.L., Cenozoic diatreme field in Chubut (Argentina) as evidence of phreatomagmatic volcanism accompanied with extensive Patagonian plateau basalt volcanism? Episodes, 2007, 30, 217–223

    Google Scholar 

  41. White J.D.L., Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA, B. Volcanol., 1991, 53, 239–258

    Article  Google Scholar 

  42. Lorenz V., Maars and diatremes of phreatomagmatic origin: a review, Transactions of the Geological Society of South Africa, 1985, 88, 459–470

    Google Scholar 

  43. Martin U., Németh K., Mio/Pliocene phreatomagmatic volcanism in the western Pannonian Basin, Geologica Hungarica Series Geologica, Geological Institute of Hungary, Budapest, 2004

  44. Suhr P., Goth K., Lorenz V., Long lasting subsidence and deformation in and above maar-diatreme volcanoes — a never ending story, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 2006, 157, 491–511

    Article  Google Scholar 

  45. Harangi S., Neogene magmatism in the Alpine-Pannonian Transition Zone — a model for melt generation in a complex geodynamic setting, Acta Vulcanologica, 2001, 13, 25–39

    Google Scholar 

  46. Seghedi I., Downes H., Szakacs A., Mason P.R.D., Thirlwall M.F., Rosu E., Pecskay Z., Marton E., et al., Neogene-Quaternary magmatism and geodynam-Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation ics in the Carpathian-Pannonian region: a synthesis, Lithos, 2004, 72, 117–146

    Article  Google Scholar 

  47. Szabó C., Harangi S., Csontos L., Review of Neogene and Quaternary volcanism of the Carpathian Pannonian Region, Tectonophysics, 1992, 208, 243–256

    Article  Google Scholar 

  48. Cloetingh S., Lankreijer A., Lithospheric memory and stress field controls on polyphase deformation of the Pannonian basin-Carpathian system, Mar. Petrol. Geol., 2001, 18, 3–11

    Article  Google Scholar 

  49. Bada G., Horváth F., On the structure and tectonic evolution of the Pannonian basin and surrounding orogens. Acta Geologica Hungarica, 2001, 44, 301–327

    Google Scholar 

  50. Horvath F., Royden L., The Pannonian Basin — a Study in Basin Evolution — Reply, Am. Assoc. Petr. Geol. B., 1990, 74, 1281–1282

    Google Scholar 

  51. Bada G., Horvath F., Gerner P., Fejes I., Review of the present-day geodynamics ofthe Pannonian basin: progress and problems, J. Geodyn., 1999, 27, 501–527

    Article  Google Scholar 

  52. Bada G., Horvath F., Cloetingh S., Coblentz D.D., Toth T., Role of topography-induced gravitational stresses in basin inversion: The case study of the Pannonian basin, Tectonics, 2001, 20, 343–363

    Article  Google Scholar 

  53. Pécskay Z., Lexa J., Szakács A., Balogh K., Seghedi I., Konecny V., Kovács M., Márton E., et al., Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian region, Acta Vulcanologica, 1995, 7, 15–28

    Google Scholar 

  54. Balogh K., Pécskay Z., K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region, Acta Geologica Academiae Scientiarum Hungaricae, 2001, 44, 281–301

    Google Scholar 

  55. Szabó C., Falus G., Zajácz Z., Kovács I., Bali E., Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review, Tectonophysics, 2004, 393, 119–137

    Article  Google Scholar 

  56. Falus G., Szabó C., Vaselli O., Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistry, Terra Nova, 2000, 12, 295–302

    Article  Google Scholar 

  57. Németh K., Martin U., Large hydrovolcanic field in the Pannonian Basin: general characteristics of the Bakony- Balaton Highland Volcanic Field, Hungary, Acta Vulcanologica, 1999, 11, 271–282

    Google Scholar 

  58. Balogh K., Németh K., Evidence for the neogene small-volume intracontinental volcanism in western Hungary: K/Ar geochronology of the Tihany Maar volcanic complex, Geologica Carpathica, 2005, 56, 91–99

    Google Scholar 

  59. Balogh K., Itaya T., Németh K., Martin U., Wijbrans J., Than N.X., Study of controversial K/Ar and 40Ar/39Ar ages of the Pliocene alkali basalt of Hegyestii, Balaton Highland, Hungary: a progress report. Mineralia Slovaca, 2005, 37, 298–301

    Google Scholar 

  60. Wijbrans J., Németh K., Martin U., Balogh K., Ar-40/Ar-39 geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary, J. Volcanol. Geoth. Res., 2007, 164, 193–204

    Article  Google Scholar 

  61. Németh K., Martin U., Late Miocene paleo-geomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data, Zeitschrift für Geomorphologie, 1999, 43, 417–438.

    Google Scholar 

  62. Martin U., Németh K., Eruptive and depositional history of a Pliocene tuff ring that developed in a fluviolacustrine basin: Kissomlyó Volcano (Western Hungary), J. Volcanol. Geoth. Res., 2005, 147, 342–356

    Article  Google Scholar 

  63. Sacchi M., Horvth F., Magyari O., Role of unconformity-bounded units in the stratigraphy of the continental record; a case study from the late Miocene of the western Pannonian Basin, Hungary. In: Durand B., Jolivet L., Horváth F., Ranne M., (Eds.), The Mediterranean basins; Tertiary extension within the Alpine Orogen., Geological Society of London, London, 1999, 357–390

    Google Scholar 

  64. Magyar I., Geary D.H., Muller P., Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe, Palaeogeogr. Palaeoec., 1999, 147, 151–167

    Article  Google Scholar 

  65. Auer A., Martin U., Németh K., The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex - Implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting, J. Volcanol. Geoth. Res., 2007, 159, 225–245

    Article  Google Scholar 

  66. Németh K., Martin U., Harangi S., Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary), J. Volcanol. Geoth. Res., 2001, 111, 111–135

    Article  Google Scholar 

  67. Németh K., Martin U., Csillag G., Erosion rate calculation based on eroded monogenetic alkaline basaltic volcanoes ofthe Mio/Pliocene Bakony-Balaton Highland Volcanic Field, Hungary, Geolines, 2003, 15, 93–97

    Google Scholar 

  68. Martin U., Németh K., Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary, J. Volcanol. Geoth. Res., 2007, 159, 164–178

    Article  Google Scholar 

  69. Németh K., Martin U., Csillag G., Lepusztult maar/diatrema szerkezetek a Bakony-Balaton Felvidék Vulkáni Területröl (Eroded maar/diatrema structures from the Bakony-Balaton Highland Volcanic Field), Annual Report of the Geological Institute of Hungary, 2003, 83–99, (in Hungarian) Karoly Németh

  70. Petrelli M., Poli G., Perugini D., Peccerillo A., Petrograph: a New Software to Visualize, Model, and Present Geochemical Data in Igneous Petrology, Geochem. Geophys. Geosyst., 2005, 6 (Q07011), DOI 10.1029/2005GC000932.

  71. Buttner R., Zimanowski B., Mohrholz C.O., Kummel R., Analysis of thermohydraulic explosion energetics, J. Appl. Phys., 2005, 98, 043524

    Article  Google Scholar 

  72. Zimanowski B., Buttner R., Lorenz V., Premixing of magma and water in MFCI experiments, B. Volcanol., 1997, 58, 491–495

    Article  Google Scholar 

  73. Maria A., Carey S., Quantitative discrimination of magma fragmentation and pyroclastic transport processes using the fractal spectrum technique, J. Volcanol. Geoth. Res., 2007, 161, 234–246

    Article  Google Scholar 

  74. Mandelbrot B.B., How long is the coast of Britain? Statistical self-similarity and fractional dimensions, Science, 1967, 156, 636–638

    Article  Google Scholar 

  75. Mandelbrot B.B., Multifractal power law distributions: Negative and critical dimensions and other “anomalies,” explained by a simple example, J. Stat. Phys., 2003, 110, 739–774

    Article  Google Scholar 

  76. Kindratenko V.V., VanEspen P.J.M., Treiger B.A., Van-Grieken R.E., Characterisation of the shape of microparticles via fractal and Fourier analyses of scanning electron microscope images, Mikrochimica Acta, 13, 1996, 355–361

    Google Scholar 

  77. Ouillon G., Sornette D., Unbiased multifractal analysis: Application to fault patterns, Geophys. Res. Lett., 1996, 23, 3409–3412

    Article  Google Scholar 

  78. Clark N., Three techniques for implementing digital fractal analysis of particle shapes, Powder Technology, 1986, 46, 132139

    Article  Google Scholar 

  79. Clark N.N., Maeder A.J., Reilly S., Data Scatter in Richardson Plots, Particle & Particle Systems Characterization, 1992, 9, 9–18

    Article  Google Scholar 

  80. Orford J.D., Whalley W.B., The use of the fractal dimension to quantify the morphology of irregular-shaped particles, Sedimentology, 1983, 30, 655–668

    Article  Google Scholar 

  81. Heiken G.H., An atlas of volcanic ash., Smithsonian Earth Science Contributions, Smithsonian Press, Washington, 1974, 12, 1–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Németh, K. Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation. Cent. Eur. J. Geosci. 2, 399–419 (2010). https://doi.org/10.2478/v10085-010-0015-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/v10085-010-0015-6

Keywords

Navigation